

Plant Health Newsletter on HORIZON SCANNING

November 2024

European Food Safety Authority (EFSA) EFSA-Q-2023-00855 doi: 10.2903/sp.efsa.2024.EN-9110

Introduction	2
1. Summary	4
Colletotrichum theobromicola	.5
Dichorhavirus orchidaceae (= Orchid fleck virus)	.5
Erwinia pyrifoliae	. 6
Ilyonectria charruensis sp. nov	. 6
Leptosphaerulina australis	. <i>7</i>
Neopestalotiopsis rosae	. <i>7</i>
Neopestalotiopsis zimbabwana	.8
Ophiostoma juglandis sp. nov	.8
Polerovirus PABYV (= Pepo aphid-borne yellows virus)	.8
Eutetranychus orientalis	
Anoplophora glabripennis	
Bursaphelenchus xylophilus	
Xylella fastidiosa1	l O
Begomovirus citrulli (= Watermelon chlorotic stunt virus)1	l O
Ralstonia solanacearum1	1
General interest1	1
2. References 1	2

23978325, 2024, 11, Dowloaded from https://efia.onflinibrary.wiley.com/oi/10.2903/sp.fsa.2024.EN-9110 by National Institutes Of Health Malaysia, Wiley Online Library on [1/1/20224]. See the Terms and Conditions (https://onlinelibrary.wiley.com/erms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons. License

Introduction

Following a request from the European Commission¹, EFSA provides here the Horizon Scanning Newsletter summarising the monthly results of the horizon scanning activity for threats in the field of plant health, that were published on the web during the previous month (e.g. the newsletter of February 2024 covers the period 1-31 January 2024). The aim is to identify in a timely manner relevant information on plant pests that might be of concern to the EU and therefore may require consideration by risk assessors and risk managers. This newsletter will first of all serve the EC and Member States in addressing phytosanitary questions and, for this reason, attention is given in avoiding duplicating information already provided to National Plant Protection Organisations (NPPOs) by official channels, such as the EPPO Bulletin². Moreover, it will benefit professionals working in the field and the informed public, to which is also dedicated the interactive dashboard in the EFSA website³.

The monitoring system is based on the automatic public health surveillance platform MEDISYS (Medical Information System), scanning more than 25,000 sources in 79 languages from 204 countries, covering all world's regions. At this moment, 2,762 plant pests (pests regulated in the EU, pests listed by EPPO and new plant pests) have been daily monitored in media, scientific literature and social media (EFSA, 2021⁴ and data from September 2021).

The monitored plant pest species include:

- regulated pests listed in Annexes IIA and IIB of the Commission Implementing Regulation (EU) 2019/2072⁵ and later amendments, in other <u>EU plant health legal</u> acts or present in the EPPO Alert, A1 and A2 lists.
- 2 Pests not regulated in the EU neither part of EPPO lists.
- 3 Newly identified taxa.

A dedicated EFSA working group meets once a month⁶ with the support of EFSA staff and contractors, in order to compose and validate the content of the newsletter: the articles to be included, the main issues, the PeMo scoring and the brief text summarizing the content of each item. The EPPO Global Database⁷, CABI Crop Protection Compendium⁸ and previous EFSA outputs⁹ are fundamental tools supporting this decision process.

¹ European Commission – Directorate General for Health and Food Safety, Request to provide a scientific and technical assistance on a horizon scanning exercise in view to crisis preparedness on plant health for the EU territory (M-2017-0012, EFSA-Q-2017-00037).

² EPPO Bulletin accessible from https://onlinelibrary.wiley.com/journal/13652338

³ The Horizon Scanning Dashboard is accessible from https://www.efsa.europa.eu/en/powerbi/plant-health-horizon-scanning-dashboard

⁴ EFSA (European Food Safety Authority), Mannino M R, Larenaudie M, Linge J P, Candresse T, Jaques Miret J A, Jeger M J, Gachet E, Maiorano A, Muñoz Guajardo I, Stancanelli G, 2021. Horizon Scanning for Plant Health: report on 2017-2020 activities. EFSA supporting publication 2021:EN-2010. 113 pp. doi:10.2903/sp.efsa.2021.EN-2010

⁵ Commission implementing Regulation (EU) 2019/2072 of 28 November 2019 establishing uniform conditions for the implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as regards protective measures against pests of plants, and repealing Commission Regulation (EC) No 690/2008 and amending Commission Implementing Regulation (EU) 2018/2019. Official Journal of the European Union L 319, latest consolidated version.

⁶ Minutes of the meetings are available here https://www.efsa.europa.eu/sites/default/files/wgs/plant-health/wg-plh-horizon-scanning.pdf

⁷ EPPO, 2023. EPPO Global Database (available online). https://gd.eppo.int

⁸ CABI, 2023. Crop Protection Compendium. Wallingford, UK: CAB International. <u>www.cabi.org/cpc</u>

⁹ EFSA Journal <u>https://efsa.onlinelibrary.wiley.com/</u>

The newsletter is composed of two parts:

- 1. The summary table where the selected items of the month are given: the main order is by category of pest according to EU regulation, followed by the alphabetical order of the pest species. For each pest, information on its taxonomical identity, host range and biology, distribution and topic of the selected article(s) is provided. Furthermore, icons and bookmarks support the navigation of the newsletter. An active link is available within the topic of each item, to open the original article which triggered its selection.
- 2. The list of the references connected to each item.

1. Summary

Category PeMos		PeMoScoring Host range		Main hosts		Damage		EU distribution			
	Bacteria	<u> </u>	Negative PeMo scoring	ø	Monophagous / One host plant	Ó	Fruit plants	٥٠٠٠	Qualitative losses	~	Present in the EU
4	Fungi and		Dogitivo		Oligophagous / Restricted range		Vegetables	•	Quantitative losses	×	Absent from the El
	oomycetes	A	Positive PeMo scoring		of host plants	*	Cereals	8	Damage leading to plant death		
Ť	Insects and mites				Polyphagous / Wide range of		Oil and fibre plants	V	Vector		
№	Molluscs				host plants	•	Forest plants		7 00001		
æ.	Nematodes					*	Ornamental and flower plants				
*	Viruses, viroids and phytoplasmas					*	Other plants				
_	\rightarrow								st relevant for EU plant ch scored positive by Pe		

Pest	Hosts range	Main hosts	Damage and symptoms	EU regulatory status and distribution	Торіс	
Colletotrichum		ੱ	● 🛇	Not listed	New host plant [1]	
theobromicola	Olive (Olea europaea), fistulosum), cassava (Macerola (Malpiqhia emai cyclamen (Cyclamen pe	lanihot esculenta), rginata), Buxus spp.,	Dieback of twigs with light tan coloured foliage.	X Absent from the EU		
	on raspberry (<i>Rubus</i> confirmed the pathog This report adds <i>C. t.</i> attributed to <i>C. fiorin</i>	idaeus), specifically in gen's identity and path heobromicola to the l liae, C. acutatum, C. l	romicola has been identified for n planting material of Italian or nogenicity tests reproduced discist of known Colletotrichum sperubicola, and C. neorubicola. August 2022: https://www.efsa	igin. Molecular and mo ease symptoms, fulfillin ecies causing raspberr	orphological analysesing Koch's postulates. y anthracnose, often	
Dichorhavirus		6 2		Not listed	First finding and	
orchidaceae (= Orchid fleck virus)	Citrus spp., Phalaenops	is hybrids.	Chlorotic spots, necrotic flecks.	X Absent from the EU	new host plant ^[2]	
*						
	but its current distrib	oution is reported as a and <i>Dendrochilum ma</i>	rus, was probably present in or rather limited, in particular in E agnum, symptomatic plants co ge and geographical distribution	urope. The article rep llected in a botanical	orts its identification	

Erwinia pyrifoliae		6	O	Not listed	First finding [3]				
***	Oriental pear tree (<i>Pyrus</i> (<i>Malus domestica</i>) and s ananassa).	,, ,, ,,	Black-brown stripes and spots on the leaves and necrotic petioles, blossoms and fruitlets comparable to fire blight.	✓ NL					
	Erwinia pyrifoliae is a new Erwinia species described in 1999. It is closely related to E. amylovora but distinct from it. E. pyrifoliae has been shown to be pathogenic to oriental pear, apple and strawberry and to have a limited geographic distribution. The article reports its first detection in symptomatic strawberries in Ohio (USA) in December 2023, thus extending the known geographical distribution of this pathogen.								
Ilyonectria	/	•	9 8	Not listed	New pest and new host plant [4]				
charruensis sp. nov.	Eucalyptus smithii		Root rot.	X Absent from the EU	nost plant				
&	In Uruguay, surveys identified Nectriaceae species associated with root rot in <i>Eucalyptus smithii</i> trees with a total of 25 isolates collected from commercial fields and nurseries. Morphological and molecular analyses identified three species: <i>Calonectria pauciramosa</i> , <i>Dactylonectria novozelandica</i> , and a novel species, <i>Ilyonectria charruensi</i> . Pathogenicity tests demonstrated that all three species significantly reduced the growth of <i>E. smithii</i> seedling confirming their role in root rot disease.								
Jacobiasca lybica	*	Ö	© O	Not listed	New finding [5]				
***	Grapevine (<i>Vitis vinifera</i>), <i>Citrus</i> spp., tomato (<i>Solanum lycopersicum</i>), eggplant (<i>S. melongena</i>), potato (<i>S. tuberosum</i>). Infested leaves change color, appear scorched and often curl downwards. Stem and leaves discoloration.								
	The insect is a longtime inhabitant of vineyards in southern EU (Greece, Portugal, Italy, Spain). The pest was already found in Corsica in 2023 and is now been reported in the mediterranean part of continental France.								

Leptosphaerulina australis	L	<i>I</i> ***		Not listed	New host plant [6]			
	Alfalfa (Medicago sativa) (Poa annua), creeping b palustris).		Leaf spot disease.	✓ ES				
	The fungus <i>Leptosphaerulina australis</i> has been reported for the first time as the causative agent of leaf sin maize (<i>Zea mays</i>). In August 2021, leaf spot symptoms were observed in maize plants in Lancang, Yuniwith disease incidence of up to 76 %. Molecular analysis confirmed the identity of the pathogen as <i>L. au</i> . Koch's postulates were successfully fulfilled. While <i>L. australis</i> has been previously isolated from turfgra and soil, this is its first identification on maize.							
Neopestalotiopsis	*	Ó		Not listed	First finding [7]			
rosae	Tangerine (<i>Citrus reticulata</i>), strawberry (<i>Fragaria ananassa</i>), pomegranate (<i>Punica granatum</i>), blueberry (<i>Vaccinium</i> sp.). Necrosis and dieback. ✓ ES, PT First finding [8]							
	The emerging fungal pathogen <i>Neopestalotiopsis rosae</i> was identified for the first time in Albania, greenhouse grown strawberries. Infected plants displayed symptoms including leaf necrosis, root rot, w light to dark brown spots on ripe fruits. Molecular and morphological analyses confirmed the presence of with pathogenicity tests successfully fulfilling Koch's postulates.							
	The fungal species <i>N. rosae</i> has been reported for the first time as causes of leaf spot and stem dieback in lingonberry (<i>Vaccinium vitis-idaea</i>). In 2021 and 2022, brown necrotic leaves and stem dieback symptoms were observed on lingonberry plants at the St. John's Research and Development Centre in Newfoundland and Labrador, Canada. The pathogen along with <i>N. zimbabwana</i> were identified through morphological analysis and genetic sequencing, and pathogenicity assays confirmed that isolates of both species could induce disease symptoms in lingonberries.							

Neopestalotiopsis		•	③ ◆ 	Not listed	First finding [8]				
zimbabwana	Tasmanian bluegum (Eu and wart-stemmed pinc (Leucospermum cuneifo	ushion	Leaf necrosis, stem girdling, cutting dieback, and leaf spot and stem dieback.	✓ PT					
	The fungal species <i>N. zimbabwana</i> has been reported for the first time as causes of leaf spot and stem di lingonberry (<i>Vaccinium vitis-idaea</i>). In 2021 and 2022, brown necrotic leaves and stem dieback sympton observed on lingonberry plants at the St. John's Research and Development Centre in Newfoundland and L Canada. The pathogen along with <i>N. rosae</i> were identified through morphological analysis and genetic seq and pathogenicity assays confirmed that isolates of both species could induce disease symptoms in lingonber								
Ophiostoma	ø	•		Not listed	New pest [9]				
juglandis sp. nov.	Walnut (<i>Juglans regia</i>).		Walnut decline.	✓ CZ					
	invasive bark beetle <i>Dryocoetes himalayensis</i> and linked to the decline of walnut trees in Czechia. This fungus was isolated from necrotic wood surrounding beetle galleries. Pathogenicity tests confirmed the aggressiveness of <i>O. juglandis</i> toward both <i>Juglans regia</i> and <i>J. nigra</i> plants.								
Polerovirus PABYV (= Pepo		ő		Not listed	Epidemiology [10]				
aphid-borne yellows virus)	Watermelon (<i>Citrullus la</i> (<i>Cucumis melo</i>), pumpk		Leaf crumpling, yellowing and downward curling.	✓ ES, GR, IT					
	Pepo aphid-borne yellows virus (PABYV) is an aphid-transmitted virus first identified in Mali in 2014 and later shown to infect cucurbit crops in several African countries, in Greece and, recently in Italy and, as a first report in Spain. The article reports its widespread presence in Spanish cucurbit crops including watermelon, zucchini, melon, pumpkin and cucumber. The authors were able to trace back its introduction in Spain to 2018 and its constant progression in prevalence since then, showing that PABYV is an emerging threat to cucurbit crops.								

Eutetranychus orientalis		estica), sunflower eet potato (Ipomoea mmunis), walnut, Morus sp. e first finding of E. ori	Chlorotic leaves, pale yellow streaks along midrib and veins. Stippling and later silvering on the rind of citrus fruit. Centalis in Sicilian citrus orchard several other non-EU countries			
Anoplophora glabripennis		petula spp., Populus beetle was found in	Oviposition holes, exit holes, oozing sap, frass, wood shavings, and galleries. Marly, canton of Fribourg, Swo GD, the status of this insect in			
Bursaphelenchus xylophilus	pine logs. Among the nematode population	he effectiveness of verthree treatment properties to statistically zerowere observed to income.	Discolouration and wilting of needles, leading to death of tree. Timber staining. racuum and steam heat treatment otocols tested, the most effect, however, it did not complete rease in number after treatment ete eradication.	ctive one (60 °C for 6 tely eradicate all nem	on minutes) reduced natodes. In addition,	

Xylella fastidiosa	L	§ • / • •	9 8	Priority pest	First finding [14]				
	Very large host range in and woody plants. Amor crops such as <i>Citrus</i> spp <i>europaea</i>), almond (<i>Pru.</i> (<i>Vitis vinifera</i>).	ng them important EU ., olive (<i>Olea</i>	Dieback, reduced growth, death. Asymptomatic in some plants.	✓ ES, FR, IT, PT	New host plant [15]				
	There is only very limited information available on the potential presence of <i>Xylella fastidiosa</i> in China, with a single 2001 report. The article reports the identification of <i>X. fastidiosa</i> subsp. <i>multiplex</i> in walnut trees (<i>Juglans regia</i> L.) with leaf scorch symptoms in Xinjiang, China, thus confirming presence of the bacteria in China.								
	comprising 72 general infected by variants of), growing in a <i>X. fas</i> of <i>X. fastidiosa</i> subsp the approach used t	f plants for a collection of New tidiosa-infected area of Californ . multiplex. The results identify to identify species susceptible t	ia (USA). Plants from 9 new natural hosts of 2	9 species were found X. fastidiosa but also				
Begomovirus citrulli (=	W	ő ő	•	Quarantine pest	New finding [16]				
Watermelon chlorotic stunt virus)	Watermelon (Citrullus lanatus), tomato (Solanum lycopersicum), cantaloupe (Cucumis melo). Yellow veins, chlorotic mottling, stunting of young leaves Yellow veins, chlorotic mottling, stunting of young leaves								
*	Watermelon chlorotic stunt virus (WmCSV) is a whitefly-borne begomovirus (Geminiviridae diseases to cucurbits, particularly watermelon, across Eastern Mediterranean countries. It had r in watermelon and Opuntia cacti in Mexico and from a few plants in a botanical garden in Arizo reports its frequent presence in watermelon and melon in commercial fields in Arizona and Cali WmCSV known geographical distribution.								

Lycorma delicatula	*	• •		Quarantine pest	Risk assessment [17]			
	Wide host range of wood (Malus domestica), Prun Acer spp., Populus spp., spp.	us spp., Vitis spp.,	Wilting leaves, dieback, weakened plants.	X Absent from the EU				
	This article reports the development of an ensemble species distribution model using three algorithms to assess the potential establishment of <i>L. delicatula</i> under current and future climate conditions in Europe. Authors conclude that neither climate conditions (current and future) nor the availability of host plants pose a barrier to the establishment of <i>L. delicatula</i> in most of the EU.							
Ralstonia solanacearum	*	Ŏ	◎ 🐧 🛇	Quarantine pest	New finding [18]			
Solaliacearum	Eggplant (Solanum melongena), tomato (S. lycopersicum), potato (S. tuberosum), Capsicum spp., Cucumis spp., Cucurbita spp. Foliage wilting, plant dieback and death, brown rot of tubers for potatoes.							
	Ralstonia solanacearum has previously been recorded in Sardinia in 2007 and 2009 but eradicated thanks to successful efforts. The media article reports its discovery in september 2024 in a total of 4 potato fields following the efforts of the regional phytosanitary service.							
General interest	Invasapp, una aplicació mòbil per a detectar insectes invasors [19]							
	Invasapp, a mobile application to detect invasive insects This article reports the launching of 'Invasapp', a citizen science app developed to allow the early detection of potential invasive pests for the Balearic Islands. Among them, several plant pests like Anthonomus euge. Anoplophora glabripennis, Cydalima perspectalis, or Rhagoletis pomonella.							

2. References

- [1] Tsvetkova YV and Elansky SN, 2024. First report of *Colletotrichum theobromicola* on raspberry. Journal of Plant Pathology. https://link.springer.com/article/10.1007/s42161-024-01778-x
- [2] Harju V, Fowkes AR, Skelton A, Adadms IP, Mcgreig S, Forde SMD, Pufal H, Conyers C, Frew L and Fox A, 2024. First detection of orchid fleck virus on *Veronica spicata* and *Dendrochilum magnum*. New Disease Reports. https://bsppjournals.onlinelibrary.wiley.com/doi/full/10.1002/ndr2.12312
- [3] Bonkowski J, Yasuhara-Bell J and Creswell T, 2024. First report of *Erwinia pyrifoliae* causing flower blight and fruit rot on greenhouse-grown *Fragaria* × *ananassa* in the United States. Plant Disease, PDIS-06. https://apsjournals.apsnet.org/doi/10.1094/PDIS-06-24-1337-PDN
- [4] De Benedetti F, Carbone MJ, Mondino P and Alaniz S, 2024. Nectriaceae species associated to root rot of nursery and young *Eucalyptus smithii* trees in Uruguay with *Ilyonectria charruensis* as novel species. The American Phytopathological Society (APS). https://apsjournals.apsnet.org/doi/10.1094/PDIS-05-24-1052-SR
- [5] Chambre d'Agriculture des Pyrénées-Orientales. 2024. Détection d'une nouvelle cicadelle, *Jacobiasca lybica*, sur le vignoble de la Côte Vermeille. https://po.chambre-agriculture.fr/actualites/detail-de-lactualites/detection-dune-nouvelle-cicadelle-jacobiasca-lybica-sur-le-vignoble-de-la-cote-vermeille/
- [6] Liu Y, Wu S, Li X, Yang M, Sun L, He S, Wu D and Fu Y, 2024. Occurrence of maize leaf spot disease caused by *Leptosphaerulina australis* in Yunnan, China. Plant Disease. https://apsjournals.apsnet.org/doi/10.1094/PDIS-11-23-2503-PDN
- [7] Cara M, Kola A, Merkuri J, Somma S, Moretti A and Masiello M, 2024. First report of Neopestalotiopsis rosae causing black root rot on strawberry (Fragaria × ananassa) in Albania. Journal of Plant Pathology https://link.springer.com/article/10.1007/s42161-024-01773-2
- [8] Novinscak A, Burlakoti RR, Roth M, Debnath S C and Jewell LE, 2024. Characterization of *Neopestalotiopsis* species associated with lingonberry (*Vaccinium vitis-idaea* L.) diseases in Canada. Canadian Journal of Plant Pathology. https://www.tandfonline.com/doi/full/10.1080/07060661.2024.2402727?af=R
- [9] Májek T, Kolařík M, Milenković I, Kašák J, Foit J and Tomšovský M, 2024. New *Ophiostoma* species associated with *Dryocoetes himalayensis* and decline of *Juglans regia* in Czechia. Journal of Plant Pathology, 1-13. https://paperity.org/p/357784422/new-ophiostoma-species-associated-with-dryocoetes-himalayensis-and-decline-of-juglans

23978252, 2024, 11, Downloaded from https://efsa.onlinelbbary.wiley.com/doi/10.2903/sp.efsa.2024.EN-910 by National Institutes of Health Malaysia, Wiley Online Library on [17/1/2024]. See the Terms and Conditions (https://onlinelbrary.wiley.com/erms-an-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licens

- [11] Fresh Plaza, 2024. New mite found in Sicilian citrus groves. https://www.freshplaza.com/europe/article/9663922/new-mite-found-in-sicilian-citrus-groves/
- [12] Tages Anzeiger. 2024. Spürhunde suchen im Kanton Freiburg nach schädlichem Käfer. https://www.tagesanzeiger.ch/marly-asiatischer-laubholzbockkaefer-im-kanton-freiburg-847631973419
- [13] Eisenback JD, Chen Z and White M, 2024. Evaluating vacuum and steam heat to eliminate pinewood nematodes in naturally infested whole pine logs. Journal of Nematology. https://sciendo.com/article/10.2478/jofnem-2024-0038
- [14] Guo T, Wang S, Pan C, Sattar A, Xing C, Hao H and Zhang C, 2024. Evidence of the involvement of *Xylella fastidiosa* in the occurrence of walnut leaf scorch in Xinjiang, China. The American Phytopathological Society (APS). https://apsjournals.apsnet.org/doi/10.1094/PDIS-07-23-1430-PDN
- [15] Visnovsky SB, Kahn AK, Nieto-Jacobo F, Panda P, Thompson S, Teulon DAJ, Molina IB, Marroni MV, Groenteman R, Rigano LA, Taylor RK, Forbes H and Almeida RPP, 2024. Multiple genotypes of a quarantine plant pathogen detected in New Zealand indigenous plants located in a botanical garden overseas. Plant Pathology. https://bsppjournals.onlinelibrary.wiley.com/doi/10.1111/ppa.14026
- [16] Wintermantel WM, Tian T, Chen C, Winarto N, Szumski S, Hladky LJ, Gurung S and Palumbo J, 2024. Emergence of watermelon chlorotic stunt virus in melon and watermelon in the southwestern United States. Plant Disease. https://apsjournals.apsnet.org/doi/10.1094/PDIS-05-24-1009-PDN
- [17] Chartois M, Fried G and Rossi JP, 2024. Climate and host plant availability are favourable to the establishment of *Lycorma delicatula* in Europe. Agricultural and Forest Entomology, 1-13. https://resjournals.onlinelibrary.wiley.com/doi/full/10.1111/afe.12665
- [18] Corriere dell'Economia, 2024. Il batterio delle patate è presente in Sardegna. https://www.corrieredelleconomia.it/2024/10/12/il-batterio-delle-patate-e-presente-in-sardegna/
- [19] DBalears, 2024. Invasapp, una aplicació mòbil per a detectar insectes invasors. https://www.dbalears.cat/balears/balears/2024/10/15/398561/invasapp-aplicacio-mobil-per-detectar-insectes-invasors.html

23978235, 2024, 11, Dowloaded from https://elsa.onlinelbbary.wiley.com/doi/10.2903/sp.cfa.2024 EN-910 by National Institutes Of Health Malaysia, Wiley Online Library on [17/12/2024]. See the Terms and Conditions (https://onlinelibrary.wiley.com/cmms-ad-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Product created using Text and Data Mining based on EMM Open Source Monitoring Engine by European Commission, Joint Research Centre (JRC)

Acknowledgements

EFSA wishes to thank the following for the support provided to this newsletter:

Dorothea Pöchlauer, María Ribaya Muñoz, Sara Tramontini, Sybren Vos from European Food Safety Authority (EFSA), Environment, Plants and Ecotoxicology Unit (PLANTS)

Adamo Uboldi, Marco Verile from European Commission, Joint Research Centre (JRC), Text and Data Mining Unit T.5

Emmanuel Gachet, Magali Larenaudie, Júlia López Mercadal from French Agency for Food, Environmental and Occupational Health & Safety (ANSES)

EFSA wishes to thank the experts of the working group on Horizon Scanning: i) Andy Bourke, Thierry Candresse, and Josep Anton Jaques Miret for reviewing and further enriching the content of the newsletter and ii) Michela Chiumenti, Eduardo De La Peña, and Marianne Loiseau for conducting the PeMo scoring.

Disclaimer

The selection of articles reflects the media and scientific coverage during the one-month time period in question. It does not reflect EFSA opinion on the articles' content, the presence of plant pests in a particular country and/or concerning a particular plant or plant product and/or endorsement of proposed control practices.

Note to the reader

This newsletter combines and substitutes the two pre-existent monthly publications: "Plant Health Newsletter: Media Monitoring" (58 published items) and "Plant Health Newsletter: Scientific Literature Monitoring" (37 published items), all accessible from the EFSA Virtual Issue "Horizon Scanning for Plant Health"

Suggested citation: European Food Safety Authority, 2024. Plant Health Horizon Scanning Newsletter, November 2024. EFSA Supporting Publications, 2024: 2024.EN-9110. 22 pp. doi:10.2903/sp.efsa.2024.EN-9110

ISSN: 2397-8325

© European Food Safety Authority, 2024

For feedback on this Newsletter please write to

PLANTS@efsa.europa.eu