Index	Wavelength nm	Exposure limit value	Units	Comment	Part of the body	Hazard	
g.	380-1 400 (Visible and IRA)	$L_R = \frac{2.8 \cdot 10^7}{C_\alpha}$ for t >10 s	[W m ⁻² sr ¹]	$C_{\alpha}=1.7$ for $\alpha \leq 1.7$ mrad $C_{\alpha}=\alpha$ for $1.7 \leq \alpha \leq 100$ mrad $C_{\alpha}=100$ for $\alpha > 100$ mrad $\lambda_1=380; \lambda_2=1400$	eye retina	retinal burn	В 2440
h.	380-1 400 (Visible and IRA)	$L_{R} = \frac{5 \cdot 10^{7}}{C_{\alpha} t^{0.25}}$ for 10 \text{ \text{ \text{ for } \$10 s}}	L _R :[W m ⁻² sr ⁻¹] t: [seconds]				Ð
i.	380-1 400 (Visible and IRA)	$L_{R} = \frac{8.89 \cdot 10^{8}}{C_{\alpha}}$ for t <10 \mus	[W m ⁻² sr ¹]				
j.	780-1 400 (IRA)	$L_{R} = \frac{6 \cdot 10^{6}}{C_{\alpha}}$ for t > 10 s	[W m ⁻² sr ¹]	C_a = 11 for $\alpha \le 11$ mrad C_α = α for $11 \le \alpha \le 100$ mrad C_α = 100 for $\alpha > 100$ mrad (measurement field-of-view: 11 mrad) λ_1 = 780; λ_2 = 1 400	eye retina	retinal burn	VERŽJONI ELETTRONIKA
k.	780-1 400 (IRA)	$L_{R} = \frac{5 \cdot 10^{7}}{C_{a}t^{0.25}}$ for 10 µs ≤ t ≤ 10 s	Lg: [W m ⁻² sr ⁻¹] t: [seconds]				
1.	780-1 400 (IRA)	$L_{R} = \frac{8.89 \cdot 10^{8}}{C_{\alpha}}$ for t < 10 \text{ \text{\mus}}	[W m ⁻² sr ¹]				
m.	780-3 000 (IRA and IRB)	$E_{IR} = 18\ 000\ r^{0.75}$ for $t \le 1\ 000\ s$	E: [W m ⁻²] t: [seconds]		eye cornea lens	corneal burn cataractogenesis	
n.	780-3 000 (IRA and IRB)	E _{IR} = 100 for t > 1 000 s	[W m ⁻²]				

Index	Wavelength nm	Exposure limit value	Units	Comment	Part of the body	Hazard
0.	380-3 000 (Visible, IRA and IRB)	H _{skin} = 20 000 t ^{0,25} for t < 10 s	H: [J m ⁻²] t: [seconds]		skin	burn

The range of 300 to 700 nm covers parts of UVB, all UVA and most of visible radiation; however, the associated hazard is commonly referred to as 'blue light' hazard. Blue light strictly speaking covers only the range of approximately 400 to 490 nm. Note 1:

For steady fixation of very small sources with an angular subtense < 11 mrad, L_B can be converted to E_B. This normally applies only for ophthalmic instruments or a stabilized eye during anaesthesia. The maximum 'stare time' is found by: t_{max} = 100/E_B with E_B expressed in W m⁻². Due to eye movements during normal visual tasks this does not exceed 100 s. Note 2: