

CONCLUSION ON PESTICIDE PEER REVIEW

Conclusion on the peer review of the pesticide risk assessment of the active substance carbendazim¹

European Food Safety Authority²

European Food Safety Authority (EFSA), Parma, Italy

SUMMARY

Carbendazim was one of the 90 substances of the first stage of the review programme covered by Commission Regulation (EC) No 3600/92³, and was included in Annex I to Directive 91/414/EEC⁴ on 1 January 2007 by Commission Directive 2006/135/EC⁵, as amended by Commission Directive 2009/152/EC⁶. The inclusion expires on 31 December 2010. In accordance with Article 5(5) of Council Directive 91/414/EEC the notifiers DuPont de Nemours (Deutschland) GmbH, BASF AG, and Bayer CropScience AG made a request to the Commission of the European Communities (hereafter referred to as 'the Commission') for renewal of the inclusion in Annex I of carbendazim. Following the notifiers' submission of the dossier, the rapporteur Member State (RMS), Germany, provided an initial evaluation of carbendazim in the format of a Draft Reassessment Report (DRAR), which was submitted to the Commission on 17 July 2009. The Commission distributed the DRAR to Member States and the EFSA for comments on 28 July 2009. Following consideration of the DRAR and the comments received, the Commission decided to further consult the EFSA. By written request, received by the EFSA on 27 October 2009, the Commission requested the EFSA to undertake a full peer review and, where necessary, to arrange further consultation with Member State experts, and to deliver its conclusions on carbendazim.

The conclusions presented in this report were reached on the basis of the evaluation of the representative uses of carbendazim as a fungicide on cereals, sugar beet, fodder beet, oilseed rape and maize, as proposed by the notifiers. Full details of the representative uses can be found in Appendix A to this report.

The specifications could not be accepted and a data gap is identified. Data gaps are also identified for various physical chemical properties and a method of analysis.

Once the technical specification has been defined, whether the toxicological studies cover the technical specification should be addressed (the available data are not sufficient and a data gap is identified). In addition, the toxicological relevance of a third impurity has to be addressed by the notifier.

¹ On request from the European Commission, Question No EFSA-Q-2009-00911, issued on 30 April 2010.

² Correspondence: praper@efsa.europa.eu

³ OJ No L 366, 15.12.1992, p.10

⁴ OJ No L 230, 19.8.1991, p.1

⁵ OJ No L 349, 12.12.2006, p.37

⁶ OJ No L 314, 1.12.2009, p.66

Suggested citation: European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance carbendazim. EFSA Journal 2010; 8(5):1598. [76 pp.]. doi:10.2903/j.efsa.2010.1598. Available online: www.efsa.europa.eu

Metabolism in plants has been investigated in three different plant groups: Fruit crops (peach), oilseed/pulses (bean) and cereals (rice). Carbendazim was shown to be the major component of the residues, and the residue for monitoring and risk assessment was defined as the parent compound alone. Residue definitions were also proposed for products of animal origin. No risk for the consumer was identified, the maximum TMDI and IESTI being only 5% of the ADI and 7% of the ARfD.

With regard to environmental fate and behaviour, information is lacking regarding the route of aerobic degradation in soil and a detailed identification/quantification of three unidentified transformation products in one soil metabolism study was not available. As a consequence, the environmental exposure assessment for potential soil metabolites is not finalised for the representative uses at EU level. A data gap is also identified for data on soil photolysis of carbendazim. Taking into consideration the weak acidic properties of carbendazim, and the lack of information on soil degradation and soil adsorption properties, it should be considered that the available environmental exposure assessment does not cover environmental conditions where alkaline soils are predominant.

The long-term risk assessment for birds needs further refinement for the use in sugar beet. A high risk was identified for the aquatic environment. Risk mitigation is needed to achieve TER values above the trigger in at least one full FOCUS scenario. However risk mitigation measures, such as a 20m no-spray buffer zone and run-off mitigation, are not sufficient to achieve TERs above the Annex VI trigger in all FOCUS scenarios. An initial impact on sensitive non-target arthropods can be expected in the in-field area but the potential for recovery/recolonisation of the in-field area was demonstrated. The risk to mammals, bees, earthworms, other non-target soil-dwelling macro- and micro-organisms, non-target plants, and biological methods of sewage treatment was assessed as low.

KEY WORDS

carbendazim, peer review, risk assessment, pesticide, fungicide

TABLE OF CONTENTS

Summary	. 1					
Table of contents	. 3					
Background	. 4					
The active substance and the formulated product	. 5					
Conclusions of the evaluation	. 5					
1. Identity, physical/chemical/technical properties and methods of analysis	. 5					
2. Mammalian toxicity	6					
3. Residues						
4. Environmental fate and behaviour	. 7					
5. Ecotoxicology						
6. Overview of the risk assessment of compounds listed in residue definitions for the environmenta	ıl					
compartments1						
6.1. Soil	10					
6.2. Ground water 1	10					
6.3. Surface water and sediment 1	10					
6.4. Air	11					
List of studies to be generated, still ongoing or available but not peer reviewed 1						
Particular conditions proposed to be taken into account to manage the risk(s) identified 1						
ssues that could not be finalised						
Critical areas of concern						
References 1	14					
Appendices 1	15					
Abbreviations	74					

BACKGROUND

Carbendazim was one of the 90 substances of the first stage of the review programme covered by Commission Regulation (EC) No 3600/92⁷, and was included in Annex I to Directive 91/414/EEC⁸ on 1 January 2007 by Commission Directive 2006/135/EC⁹, as amended by Commission Directive 2009/152/EC¹⁰. The inclusion expires on 31 December 2010.

In accordance with Article 5(5) of Council Directive 91/414/EEC the notifiers DuPont de Nemours (Deutschland) GmbH, BASF AG, and Bayer CropScience AG made a request to the Commission of the European Communities (hereafter referred to as 'the Commission') for renewal of the inclusion in Annex I of carbendazim. On 10 January 2008, in support of their request, the notifiers submitted a dossier to Germany, being the designated rapporteur Member State (RMS). The RMS provided an initial evaluation of carbendazim in the format of a Draft Reassessment Report (DRAR) (DE, 2009), which was submitted to the Commission on 17 July 2009.

The Commission distributed the DRAR to Member States and the EFSA for comments on 28 July 2009. The Commission invited comments to be provided by 25 September 2009. Following consideration of the DRAR and the comments received, the Commission decided to further consult the EFSA. By written request, received by the EFSA on 27 October 2009, the Commission requested the EFSA to undertake a full peer review and, where necessary, to arrange further consultation with Member State experts, and to deliver its conclusions on carbendazim.

The Commission collated all comments received and distributed them to the notifiers for comment on 1 December 2009. Following receipt of the notifiers' comments, the Commission collated all comments received and forwarded them to the RMS for compilation in the format of a Reporting Table. The notifiers were invited to respond to the comments in column 3 of the Reporting Table. The RMS also provided a response to the comments in column 3.

The need for expert consultation was considered in a telephone conference between the EFSA, the RMS, and the Commission on 9 February 2010. On the basis of the comments received, the notifiers' response to the comments, and the RMS's subsequent evaluation thereof, it was concluded that the EFSA should organise a consultation with Member State experts in the area of mammalian toxicology.

The outcome of the telephone conference, together with the EFSA's further consideration of the comments, is reflected in the conclusions set out in column 4 of the Reporting Table. All points that were identified as unresolved at the end of the comment evaluation phase and which required further consideration, including those issues to be considered in consultation with Member State experts, were compiled by the EFSA in the format of an Evaluation Table.

The conclusions arising from the consideration by the EFSA, and as appropriate by the RMS, of the points identified in the Evaluation Table, together with the outcome of the expert discussions where these took place, were reported in the final column of the Evaluation Table.

A final consultation on the conclusions arising from the peer review of the risk assessment took place with Member States via a written procedure in April 2010.

This conclusion report summarises the outcome of the peer review of the risk assessment on the active substance and the representative formulation evaluated on the basis of the representative uses as a fungicide on cereals, sugar beet, fodder beet, oilseed rape and maize, as proposed by the notifiers. A list of the relevant end points for the active substance as well as the formulation is provided in Appendix A. In addition, a key supporting document to this conclusion is the Peer Review Report

⁷ OJ No L 366, 15.12.1992, p.10

⁸ OJ No L 230, 19.8.1991, p.1

⁹ OJ No L 349, 12.12.2006, p.37

¹⁰ OJ No L 314, 1.12.2009, p.66

(EFSA, 2010), which is a compilation of the documentation developed to evaluate and address all issues raised in the peer review, from the initial commenting phase to the conclusion. The Peer Review Report comprises the following documents:

- the comments received,
- the Reporting Table (revision 1-1; 09 February 2010),
- the Evaluation Table (30 April 2010),
- the report(s) of the scientific consultation with Member State experts (where relevant).

Given the importance of the DRAR including its addendum (compiled version of March 2010 (DE, 2010) containing all individually submitted addenda) and the Peer Review Report, both documents are considered respectively as background documents A and B to this conclusion.

THE ACTIVE SUBSTANCE AND THE FORMULATED PRODUCT

Carbendazim is the ISO common name for methyl benzimidazol-2-ylcarbamate or 2-(Methoxycarbonylamino)-benzimidazole (IUPAC).

The representative formulated product for the evaluation was 'DPX-N7872-205' a suspo-emulsion (SE) containing 125 g/L carbendazim and 250 g/L flusilazole.

The representative uses comprise of outdoor foliar spraying against fungi in cereals, sugar beet, fodder beet, oilseed rape and maize. Full details of the GAP can be found in the list of end points in Appendix A.

CONCLUSIONS OF THE EVALUATION

1. Identity, physical/chemical/technical properties and methods of analysis

3-Amino-2-hydroxyphenazine (AHP) and 2,3-Diamino-phenazine (DAP) are considered as relevant impurities. Mammalian toxicology has agreed that their maximum content is AHP 0.0005 g/kg and DAP 0.0006 g/kg of the carbendazim content in the technical material (TC). A third impurity may be relevant but this is subject to a data gap for further information on toxicological relevance. The FAO specification sets maximum levels of 0.0005 g/kg of the carbendazim content in the TC for AHP and 0.003 g/kg of the carbendazim content in the TC for DAP. Minimum purity for the active substance in the FAO specification is 960 g/kg.

The proposed specifications for the various sources of carbendazim could not be accepted.

The main data regarding the identity of carbendazim and its physical and chemical properties are given in Appendix A. Data gaps are identified for the following properties of carbendazim: UV spectra, solubility in organic solvents, dissociation constant, flammability, auto-flammability, explosive properties, oxidising properties and surface tension. Persistent foam is a data gap for the formulation.

Residues of carbendazim in plants can be analysed by LC-MS/MS methods. For products of animal origin, methods are available to analyse carbendazim in meat, milk, eggs and fat. A primary method with ILV is not available for liver and kidney; a LC-MS/MS method is available, however this can only be accepted as a confirmatory method because it is not fully validated. No methods are available for animal products for the metabolite 5-OH-carbendazim. However, since no MRLs for animal products are proposed, data gaps have not been identified. For soil, LC-UV and LC-MS methods are available. Water and air are analysed by LC-MS/MS. For body fluids and tissues the animal products method can be used for tissues, and an LC-MS/MS method is available for plasma. However, as the

plasma method is not fully validated it can only be accepted as a confirmatory method and a data gap has been identified for a primary method.

2. Mammalian toxicity

A clear conclusion on whether the toxicological studies cover the specifications cannot be drawn as enough data are not available. Two genotoxic impurities were considered relevant, 2, 3-Diamino-phenazine (DAP) and 3-Amino-2-hydroxyphenazine (AHP). Their maximum upper levels are 0.0006 and 0.0005 g/kg, respectively, based on toxicological data. In addition, a third impurity (Code AE F037197) may be relevant (i.e. genotoxic properties) and a data gap has been identified.

Carbendazim is not acutely toxic via the oral, dermal and inhalation routes. It is not a skin or eye irritant but is a skin sensitizer. The liver (increased weight together with clinical chemistry and histopathological findings) and the testes (reduced weight and azoospermia) were the target organs after short-term exposure in rats and dogs, with the dog being the most sensitive species. Besides non-specific effects, a decrease in body weight and food consumption was also observed. The relevant short-term NOAEL is 2.7 mg/kg bw/day based on testes findings in dogs.

Carbendazim caused numerical chromosome aberrations both *in vitro* and *in vivo* as a result of the interference with mitotic spindle proteins, a threshold concentration for aneugenic activity *in vitro* was estimated to be between 0.2-0.6 μ g/mL, and the NOEL for aneuploidy *in vivo* is 50 mg/kg bw. Carbendazim did not cause gene mutations or structural chromosomal aberrations. Nevertheless, the RMS informed EFSA that, in the framework of the evaluation of carbendazim under the biocides Directive 98/8/EC, two *in vitro* genotoxicity studies (Ames test and Chromosome aberration test in CHO cells) were presented, which were not submitted by the notifiers in the context of the evaluation under Directive 91/414/EEC. The test material (batch 010310, purity >98 %) was mutagenic in bacteria (TA98, TA1537 with S9) and clastogenic and aneugenic in CHO cells. The impurity profile of the batch tested is currently not known. In the absence of further data, it is not possible to address adequately the relevance of these findings, and as a result there are uncertainties with regard to the data package on genotoxicity submitted under the Directive 91/414/EEC.

In long-term toxicity studies in rats, mice and dogs the target organ was the liver (increased weight, together with clinical chemistry and histopathological findings), with the dog being the most sensitive species. Carcinogenic effects were confined to susceptible mouse strains in which increased incidence of liver tumours was observed, and therefore they were not considered of relevance for humans. The relevant long-term NOAEL is 2.6 mg/kg bw/day based on liver findings in dogs. Reproduction toxicity studies in rats showed that carbendazim produces infertility in males, decreased sperm counts, testicular atrophy and absence of spermatogenesis. The relevant parental, reproductive and offspring NOAEL is 100 mg/kg bw/day. Studies on developmental toxicity by oral gavage in rats and rabbits demonstrated that carbendazim is a developmental toxicant and teratogen. The relevant developmental NOAEL is 10 mg/kg bw/day in rats and rabbits, whereas the maternal NOAELs are 30 and 20 mg/kg bw/day in rats and rabbits respectively. There is no indication of any direct neurotoxic potential of carbendazim. The overall acceptable daily intake (ADI), acceptable operator exposure level (AOEL) and acute reference dose (ARfD) of 0.02 mg/kg bw/day were based on the developmental data in rats and rabbits (NOAEL of 10 mg/kg bw/day), and applying a safety factor of 500. There is a margin of safety of 2500 between the references values and the NOEL for the induction of an euploidy in vivo. This margin was considered adequate to cover uncertainties with regard to species differences, influences of the methodology used (i.e. endpoint for an euploidy measured in vivo (micronucleus) less sensitive than assessed in vitro (non-disjunction)) and the possible effects of exposure conditions (i.e. single vs. repeated administration).

Based on the effects described above, classification and labelling with **R43** (May cause sensitisation by skin contact) in addition to the current classification and labelling as Muta. Cat. 2; R46 and Repr. Cat. 2; R60-61 (Annex I, Directive 67/548 EEC, adaptation to technical progress 29), is proposed.

Operator exposure estimates are below the AOEL if personal protective equipment (PPE) is used (gloves during mixing and loading, and standard protective garment as well as sturdy footwear during application). Worker exposure estimates are below the AOEL even if PPE are not used. Bystander exposure is also below the AOEL.

3. Residues

Metabolism in plants was investigated using foliar application of ¹⁴C-carbendazim on beans and peaches and ¹⁴C-benomyl on rice. An additional study where ¹⁴C-carbendazim was applied to strawberry plants via hydroponic solution was provided but was considered to be informative only.

The studies performed in the 1970s or 1980s are relatively poor when compared to the current guidelines but they were considered sufficient to depict the overall metabolism of carbendazim in plants. Parent carbendazim remains the main component of the residues at harvest, accounting for *c.a.* 90%TRR in beans and peaches and 48%-63% TRR in mature rice grain and straw, the other metabolites being detected in low proportions (<10%TRR). However in rice, where all samples were analysed using two different extraction procedures, it must be noted that the metabolite 2-AB appears to be the major component when extracted under alkaline conditions, confirming a rapid degradation of carbendazim to 2-AB under basic conditions. A similar metabolic profile was observed in the rotational crop studies performed at exaggerated rates where parent was shown to be major. Based on these studies, the residues for monitoring and risk assessment were defined as the parent compound carbendazim only. However, it must be highlighted that carbendazim residues might also result from the uses of the active substances benomyl (no longer authorised within EU), and thiophanate-methyl.

A sufficient number of supervised residue trials were submitted to derive MRLs for barley, wheat (including rye and triticale), maize, sugar beet and rape seed. The trial results are supported by the storage stability studies showing carbendazim residues to be stable for more than 30 months when stored frozen at -20°C in water-containing matrices (sugar beet, tomato) and cereal straw. However, the stability in wheat grains was questionable, with low recoveries after 6 and 12 months, and a new storage stability study in cereal grains is identified as a data gap. A standard hydrolysis study shows no significant degradation of carbendazim under conditions simulating pasteurisation, baking or sterilisation. A processing study was submitted for barley only.

Livestock metabolism studies were submitted for dairy cow and laying hens. Carbendazim was extensively metabolised by hydroxylation to 5-OH-carbendazim (up to 48% TRR in kidney and milk), and to a lesser extent to 4-OH-carbendazim (up to 28% TRR in milk). Based on these studies, the residue for monitoring and risk assessment in animal matrices was defined as "sum of carbendazim, and 5-OH-carbendazim expressed as carbendazim", except for milk where the residue definition for risk assessment was proposed as "sum of carbendazim, 5-OH-carbendazim and 4-OH-carbendazim expressed as carbendazim, 5-OH-carbendazim and 4-OH-carbendazim and a conversion factor for risk assessment was derived for milk. However, no MRLs were proposed for products of animal origin since, considering the estimated intakes by animals resulting from the representative uses, no residues are expected to be present in significant levels in animal matrices.

No risk for the consumer was identified, the maximum TMDI and IESTI being only 5% of the ADI (DK Child) and 7% of the ARfD.

4. Environmental fate and behaviour

Four non-GLP studies were provided to investigate the aerobic route of degradation of carbendazim in soil (7 soils investigated, with non-radiolabelled carbendazim or carbendazim radiolabelled in the imidazole position). Because of the poorly documented studies and relevant deficiencies in the experimental designs, it was concluded that the available information was not sufficient to address the route of degradation of carbendazim in soil under aerobic conditions. A data gap was also identified for detailed identification/quantification of three unidentified transformation products found in one

soil incubation, to clarify whether any of these metabolites would trigger a further exposure assessment in the environmental compartments. The only identified metabolite was 2-aminobenzimidazole (2-AB) up to 4-8% AR after 240 d.

In soil laboratory incubations under anaerobic conditions, where the active substance benomyl (a precursor of carbendazim) was applied, carbendazim accounted for 41-54% AR, whereas 2-AB was a minor component (< 2% AR). A data gap was identified for photolysis degradation in soil for carbendazim.

Reliable aerobic degradation rates of carbendazim were available for only 3 soils, and indicated that carbendazim exhibits moderate persistence in soil. Dissipation of carbendazim was investigated also in four German field trials. Field degradation rates normalized to FOCUS reference conditions at 20° C and 10 kPa, were in the range 10-50 days, confirming that accumulation of carbendazim in soil is not expected. Because the range of the pH values for soils tested in both laboratory and field trials was limited to acidic conditions (soil pH 4.7-6.8, n= 7) it was concluded that the rate of degradation/dissipation of carbendazim in soil does not cover neutral and alkaline conditions.

Carbendazim is medium mobile in soil. There was no indication that adsorption of carbendazim was pH dependent (pH values of the soils tested: 5.2-7.0).

A major (> 10%AR) degradation product of carbendazim was observed in the hydrolytic degradation study at higher pH values (pH 9). This corresponded to metabolite 2-AB up to 30% AR after 30 d.

In laboratory incubations in dark aerobic natural sediment water systems (2 systems investigated), carbendazim exhibited moderate to medium persistence, forming no major metabolites. The metabolite 2-aminobenzimidazole was detected at a maximum peak value of 6.3% AR in the sediment after 76 days of incubation. The majority of carbendazim partitioned to sediment during the study, and only a small percentage ($\leq 0.2\%$ AR) was found in the water phase at the study end (120d). Mineralisation was low or low to moderate in the two systems (4.7% AR and 20.4% AR). Relatively high amounts of non-extractable residues (55.2-59.4% AR after 120d) were formed in the sediment of both systems.

A revised surface water and sediment exposure assessment (Predicted environmental concentrations (PEC)) was appropriately carried out by the RMS using the FOCUS (2001) up to step 4 (Addendum 3 (DE, 2010)). The EFSA agreed the revised calculations based on soil DT50lab of 40 days normalised to FOCUS reference conditions (worst case value as reliable DT50 values are available for 3 soils only); arithmetic mean of the Freundlich isotherm (1/n) of 0.97; a DT50water = 75 days (worst case from the water/sediment studies) and DT50sed = 1000 days. Appropriate mitigation measures for spray drift and run-off in line with the recommendations of the FOCUS landscape and mitigation report (FOCUS, 2007) were adopted at step 4 simulations. FOCUS PECsw and PECsed were calculated at step 1 for the soil metabolite 2-AB for the spray drift route of entry. The drainage and run-off for soil of as yet unknown soil metabolites may need to be addressed.

The necessary groundwater exposure assessment for carbendazim was revised by the RMS in Addendum 3 following the recommendations of the peer review (worst case normalised soil DT50lab = 40 d; arithmetic mean of the Freundlich isotherm (1/n) = 0.97; arithmetic mean Koc = 225 mL/g). The PECgw calculations were simulated with the FOCUS PEARL 2.2.2 model based on three usage regimes that differed from those reported in the GAP table. However, as the application rates considered were higher than the ones indicated for the representative uses, the EFSA considers the assessment acceptable. The potential for groundwater exposure from the representative uses by carbendazim above the parametric drinking water limit of 0.1 µg/L, was concluded to be low in geoclimatic situations that are represented by all 9 FOCUS groundwater scenarios.

The PEC in soil, surface water, sediment and groundwater covering the representative uses can be found in Appendix A.

5. Ecotoxicology

No assessment was provided concerning whether the ecotoxicological studies provided cover the specifications. In addition, the ecotoxicological relevance of impurity Code AE F037197 should be further addressed and a data gap is identified.

The acute, short-term and long-term risk to birds and mammals was assessed as low for exposure to carbendazim alone. However the first-tier long-term TERs were below the trigger for exposure to the second active substance (flusilazole). The RMS presented a refined risk assessment including a risk assessment for combined exposure in an addendum (DE, 2010). The acute and short-term risk was assessed as low but the long-term TERs were below the trigger. Refinement of the risk assessment was based on yellowhammer (*Emberiza citronella*) and generic focal species (woodlark *Lullula arborea*, yellow wagtail *Motacilla flava* and wood pigeon *Columba palumbus*), as suggested in the new EFSA Guidance Document on the risk assessment for birds and mammals (EFSA, 2009). EFSA agrees with the risk assessment presented by the RMS. However the refined TERs for the generic focal species yellow wagtail were below the trigger for the use in sugar beet based on a mixed diet of ground-dwelling and leaf-dwelling arthropods. While the arguments presented by the RMS may be sufficient to conclude on a safe use in sugar beet in Northern Europe, EFSA is of the opinion that further refinement of the risk assessment is necessary for the use in sugar beet in Southern Europe since the TER of 3.5 is clearly below the trigger of 5.

The first-tier TERs for the acute and long-term risk to mammals were above the trigger for both carbendazim and flusilazole. No risk assessment for combined exposure was conducted. However, since the TERs clearly exceeded the Annex VI trigger it is not expected that combined exposure to the formulated product would result in TERs below the trigger. Overall it is concluded that the risk to mammals is low for the representative uses.

Carbendazim is very toxic to aquatic organisms. Acute LC50/EC50 of 0.019 mg a.s./L and 0.15 mg a.s./L were observed for fish and daphnids. The chronic toxicity endpoint for daphnids (NOEC = 0.0015 mg a.s./L) was driving the aquatic risk assessment. The endpoints for the representative formulation (including the second active substance flusilazole) are similar to technical carbendazim. Therefore it can be assumed that the risk assessment for the active substance covers the risk from exposure to the second active substance.

No full FOCUS step 3 scenario resulted in TERs above the trigger for the use on spring and winter cereals, and winter and spring oilseed rape. No aquatic risk assessment was presented for the use on sugar beet (lower application rates of 3 x 62.5 g a.s./ha) and maize (same application rates as for cereals and oilseed rape of 2 x 100 g a.s./ha). However, it is assumed that the risk assessment for cereals also covers the risk from these two uses.

Overall it can be concluded that risk mitigation (comparable to 10m or 20m no-spray buffer zones) is necessary for all representative uses in order to achieve TERs above the trigger in at least one full FOCUS scenario. However, it should be noted that it was not demonstrated that a 20m no-spray buffer zone, including run-off mitigation, would be sufficient as a risk mitigation measure to achieve TERs above the Annex VI trigger in all FOCUS scenarios.

The in-field HQ value was <2 for the indicator species *Aphidius rhopalosiphi* but was >2 for *Typhlodromus pyri*. The off-field HQ values indicated a low off-field risk. In an aged residue study it was demonstrated that adverse effects are <50% after 28 days of ageing of residues. It can be concluded that an initial impact on sensitive arthropod species can be expected in the in-field area but recovery/recolonisation is possible within one season.

The risk to bees, earthworms, other soil-dwelling macro- and micro-organisms, non-target plants and biological methods of sewage treatment was assessed as low.

6. Overview of the risk assessment of compounds listed in residue definitions for the environmental compartments

6.1. Soil

Compound (name and/or code)	Persistence	Ecotoxicology
carbendazim	moderate persistence Single first order DT_{50} 26-40 days (20°C, 10kPa soil moisture)	The risk to earthworms and soil micro-organisms was assessed as low.

6.2. Ground water

Compound (name and/or code)	Mobility in soil	>0.1 µg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)		Toxicological relevance	Ecotoxicological activity
carbendazim	medium mobility K _{Foc} 200-246 mL/g	no	Yes	Yes	Very toxic to aquatic organisms. A high risk was identified for aquatic organisms from exposure in surface water.

6.3. Surface water and sediment

Compound (name and/or code)	Ecotoxicology
carbendazim	Very toxic to aquatic organisms (acute LC50 fish = 0.019 mg a.s./L, the chronic NOEC for daphnids of 0.0015 mg a.s./L) is driving the aquatic risk assessment. A high risk for the aquatic environment was identified (no full FOCUS step3 scenario resulted in TERs above the Annex VI trigger).

6.4. Air

Compound (name and/or code)	Toxicology
carbendazim	Not acutely toxic (LC50>5.8 mg/L air (4-h exposure, head/nose-only)

LIST OF STUDIES TO BE GENERATED, STILL ONGOING OR AVAILABLE BUT NOT PEER REVIEWED

- A reliable specification should be proposed based on the supporting batch data (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown see section 1).
- The following physchem properties of the active substance have been identified as data gaps: UV spectra, solubility in organic solvents, the dissociated species, flammability, auto-flammability, explosive properties, oxidising properties and surface tension (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown, see section 1).
- Persistent foam of the formulation (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 1).
- Primary fully validated method for body fluids (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 1).
- Once the technical specification has been defined (see section 1) whether the toxicological and ecotoxicological studies cover the technical specification has to be addressed (relevant for all representative uses evaluated, data gap identified in the reporting table, data of submission unknown, see sections 2 and 5).
- The toxicological and ecotoxicological relevance assessment of the impurity Code AE F037197 as the setting of an upper limit, if needed, has to be addressed (relevant of all representative uses evaluated, data gap identified in the reporting table, data of submission unknown, see sections 2 and 5).
- The relevance of the positive results of *in vitro* genotoxicity studies (Ames test and Chromosome aberration test in CHO cells) performed with carbendazim technical (batch 010310, purity >98 %) available under the biocide regulation should be evaluated (relevant of all representative uses evaluated, see section 2).
- A storage stability study of carbendazim residues in cereal grains is required in order to support the results of the supervised residue trials (relevant for the representative uses on cereals; data gap identified in the reporting table, submission date proposed by the notifier: unknown; see section 3).
- Adequate route of aerobic degradation of carbendazim in soil (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 4).
- Estimates of aerobic degradation rates of carbendazim in neutral-alkaline soils (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 4).
- Quantification and, if needed, identification of the unidentified soil transformation products formed in one aerobic soil degradation study (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 4).
- Pending adequate data on route of aerobic degradation in soil, further consideration of run-off or drainage to surface water of soil metabolites may be required (see section 4).
- Adequate soil photolysis study for carbendazim (relevant for all representative uses evaluated; submission date proposed by the notifier: unknown; see section 4).

• The long-term risk to birds needs to be refined further (relevant for the use in sugar beet in Southern Europe, data gap proposed by EFSA after receipt of the addenda, see section 5).

PARTICULAR CONDITIONS PROPOSED TO BE TAKEN INTO ACCOUNT TO MANAGE THE RISK(S) IDENTIFIED

- The use of personal protective equipment (PPE) of gloves during mixing and loading, and standard protective garment as well as sturdy footwear during application, is needed to reduce the operator exposure to below the AOEL. See section 2.
- Risk mitigation measures comparable to 10m or 20m no-spray buffer zones are needed to achieve TER values above the trigger in at lease one or more full FOCUS scenarios.

ISSUES THAT COULD NOT BE FINALISED

- According to the dossier submitted under Directive 91/414/EEC carbendazim caused numerical chromosome aberrations both *in vitro* and *in vivo* as a result of the interference with mitotic spindle proteins, a threshold concentration for aneugenic activity *in vitro* was estimated to be between 0.2-0.6 µg/mL, and the NOEL for aneuploidy *in vivo* is 50 mg/kg bw. Carbendazim did not cause gene mutations or structural chromosomal aberrations. However, in the context of the evaluation of carbendazim under the Directive 98/8/EC, two *in vitro* genotoxicity studies (Ames test and Chromosome aberration test in CHO cells) were presented, which were not submitted by the notifiers in the context of the evaluation under Directive 91/414/EEC. The test material (batch 010310, purity >98 %) was mutagenic in bacteria (TA98, TA1537 with S9) and clastogenic and aneugenic in CHO cells. The impurity profile of the batch tested is currently not known. Therefore the relevance of these new studies (in the absence of the raw data and the impurity profile) to the current assessment of carbendazim could not be finalised.
- Route of aerobic degradation in soil.
- The environmental exposure assessment for potential soil metabolites is not finalised for the representative uses at EU level.
- The available environmental exposure assessment (soil, ground water and surface water) does not cover environmental conditions where alkaline soils are predominant.
- The long-term risk to birds is not finalised for the use on sugar beet in Southern Europe.

CRITICAL AREAS OF CONCERN

• The proposed reference specification is not acceptable because it is not supported by the available data, and a clear conclusion on whether the toxicological studies cover the specifications cannot be drawn as the available data are not sufficient. In addition, no assessment was provided as to whether the ecotoxicological studies cover the specifications.

REFERENCES

- DE, 2009. Draft Reassessment Report on the active substance carbendazim, prepared by the rapporteur Member State Germany in accordance with Article 5(5) of Council Directive 91/414/EEC, July 2009.
- DE, 2010. Final Addendum to Assessment Report on carbendazim, compiled by EFSA, March 2010.
- EFSA (European Food Safety Authority), 2010. Peer Review Report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance carbendazim.

Guidance documents¹¹:

- EFSA (2009). Guidance Document on Risk Assessment for Birds and Mammals on request from EFSA. EFSA Journal 2009; 7(12): 1438.
- FOCUS, 2007. "Landscape And Mitigation Factors In Aquatic Risk Assessment. Volume 1. Extended Summary and Recommendations". Report of the FOCUS Working Group on Landscape and Mitigation Factors in Ecological Risk Assessment, EC Document Reference SANCO/10422/2005 v2.0. 169 pp.

¹¹ For further guidance documents see <u>http://ec.europa.eu/food/plant/protection/resources/publications_en.htm#council</u> (EC) or <u>http://www.oecd.org/document/59/0,3343.en_2649_34383_1916347_1_1_1_1_0.html</u> (OECD)

APPENDICES

APPENDIX A – LIST OF END POINTS FOR THE ACTIVE SUBSTANCE AND THE REPRESENTATIVE FORMULATION

Identity, physical and chemical properties, details of uses, further information

Active substance (ISO Common Name) ‡

Function (e.g. fungicide)

carbendazim	
fungicide	

Rapporteur Member State

Co-rapporteur Member State

Federal Republic of Germany	
none	

Identity (Annex IIA, point 1)

Chemical name (IUPAC) **‡**

Chemical name (CA) ‡

CIPAC No ‡

CAS No **‡** EC No (EINECS or ELINCS) **‡**

FAO Specification (including year of publication) **‡**

Minimum purity of the active substance as manufactured **‡**

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Molecular formula ‡

Molecular mass **‡**

Structural formula ‡

methyl benzimidazol-2-ylcarbamate or 2-(Methoxycarbonylamino)-benzimidazole methyl 1H-benzimidazol-2-ylcarbamate 263 10605-21-7 EEC: 613-048-00-8; EINECS:234-232-0 AGP: CP/220 (1992); 960 g/kg AHP 0.0005 g/kg of the carbendazim content in the TC DAP 0.003 g/kg of the carbendazim content in the TC Open AHP 0.0005 g/kg of the carbendazim content in the TC DAP 0.0006 g/kg of the carbendazim content in the TC $C_9H_9N_3O_2$ 191.21 g/mol Η

	, F ·· -)					
Melting point (state purity) ‡	302 – 307 °C (under decomposition) (> 99 %)					
Boiling point (state purity) ‡	Not applicable					
Temperature of decomposition (state purity)	302 – 307 °C (under decomposition) (> 99 %)					
Appearance (state purity) ‡	Pure: almost colourless crystalline solid, odourless;					
	Tech.: sand-coloured to light grey crystalline powder, odourless					
Vapour pressure (state temperature, state purity) ‡	9 x 10 ⁻⁵ Pa (20 °C); 1.5 x 10 ⁻⁴ Pa (25 °C)					
Henry's law constant ‡	3.6 x 10 ⁻³ Pa m ³ mol ⁻¹ (24 °C)					
Solubility in water (state temperature, state purity and pH) ‡	pH 4: 29 mg/L pH 7: 8 mg/L pH 8: 7 mg/L 24 °C, (> 99 %)					
Solubility in organic solvents ‡ (state temperature, state purity)	Open					
Surface tension ‡ (state concentration and temperature, state purity)	Open					
Partition co-efficient ‡ (state temperature, pH and purity)	pH 5: $\log P_{O/W}$ 1.4 pH 7 + 9: $\log P_{O/W}$ 1.5 all at 25 °C, (98 % radiochemical)					
Dissociation constant (state purity) ‡	pKa = 4.2 (99.6 %) Open for identification of the dissociated species					
UV/VIS absorption (max.) incl. ε ‡ (state purity, pH)	Open					
Flammability ‡ (state purity)	Open					
Explosive properties ‡ (state purity)	Open					
Oxidising properties ‡ (state purity)	Open					

Physical and chemical properties (Annex IIA, point 2)

<u>Summary of representative uses evaluated (Carbendazim)</u>

Crop and/ or situation	Member State or Country	Product name	F G or I	Pests or Group of pests controll ed	Pı	reparation		Appli	cation		(for e	ation rate per explanation see front of this s	e the text	PHI (days)	Remarks
(a)			(b)	(c)	Type (d-f)	Conc. of as (i)	method kind (f-h)	growth stage & season (j)	number min/ max (k)	interval between applications (min)	g as/hL min - max (l)	water L/ha min - max	g as/ha min - max (l)	(m)	
Cereals: Wheat, Rye, Triticale (winter, spring)	BE, LU CZ, DE, IRL, UK PL, FR SP PT	Punch SE Harvesan Punch C Escudo Forte Punch CS Punch CS Contrast CS	F	Stem, foliar and ear diseases	SE	Flusiliazole 250 g/L Carbendazim 125 g/L	Hydraulic sprayer overall	BBCH 69-71 BBCH 59-61 BBCH 69-71	2	14		100-400 100-150 100-600	Flusiliazole 200 g as/ha Carbendazim 100 g as/ha	N/A* 42 N/A*	[1] [2] Minimum PHI
Cereals: Barley (winter, spring)	BE, LU DE, IRL, UK PL, FR SP PT	Punch SE Harvesan Punch C Escudo Forte Punch CS Punch CS Contrast CS	F	Foliar and ear diseases	SE	Flusiliazole 250 g/L Carbendazim 125 g/L	Hydraulic sprayer overall	BBCH 49-51 BBCH 59-61 BBCH 69-71	2	14		100-400 100-150 100-600	Flusiliazole 200 g as/ha Carbendazim 100 g as/ha	42 42 N/A*	[1] [2] Minimum PHI
Sugar and fodder beet North	BE, LU DE, IRL, UK	Punch SE Harvesan Punch C	F	Foliar diseases	SE	Flusiliazole 250 g/L Carbendazim 125 g/L	Hydraulic sprayer overall	Full crop cover BBCH 49	2	28		100-150	Flusiliazole 150 g as/ha Carbendazim 75 g as/ha	42	[1] [2]

Crop and/ or situation	Member State or Country	Product name	F G or I	Pests or Group of pests controll ed	P	reparation		Appli	cation		(for e	ation rate per explanation see front of this s	e the text	PHI (days)	Remarks
(a)			(b)	(c)	Type (d-f)	Conc. of as (i)	method kind (f-h)	growth stage & season (j)	number min/ max (k)	interval between applications (min)	g as/hL min - max (l)	water L/ha min - max	g as/ha min - max (l)	(m)	
Sugar and fodder beet	FR	Punch CS	F	Foliar diseases	SE	Flusiliazole 250 g/L Carbendazim 125 g/L	Hydraulic sprayer overall	Full crop cover BBCH 49	2	28		100-150	Flusiliazole 125 g as/ha Carbendazim 62.5 g as/ha	35 - 42	[1] [2]
Sugar and fodder beet South	SP PT	Punch CS Contrast CS	F	Foliar diseases	SE	Flusiliazole 250 g/L Carbendazim 125 g/L	Hydraulic sprayer overall	Full crop cover BBCH 49	3	14		100-400	Flusiliazole 125 g as/ha Carbendazim 62.5 g as/ha	15	[1] [2]
Oil seed rape	FR	Punch CS	F	Foliar and pod diseases	SE	Flusiliazole 250 g/L Carbendazim 125 g/L	Hydraulic sprayer overall	Flowering declining; majority of petals fallen BBCH 67	2	21		100-150	Flusiliazole 200 g as/ha Carbendazim 100 g as/ha	63	[1] [2]
Oil seed rape	UK, DE	Punch SE Harvesan	F	Foliar and pod diseases	SE	Flusiliazole 250 g/L Carbendazim 125 g/L	Hydraulic sprayer overall	Flowering declining; majority of petals fallen BBCH 67	2	21		100-400	Flusiliazole 200 g as/ha Carbendazim 100 g as/ha	N/A*	[1] [2]
Maize	FR	Punch CS	F	Foliar diseases	SE	Flusiliazole 250 g/L Carbendazim 125 g/L	Hydraulic sprayer overall	BBCH 75	2	21		100-150	Flusiliazole 200 g as/ha Carbendazim 100 g as/ha	28	[1] [2]

[1] No specifications are accepted because they are not supported by the available data and a clear conclusion on whether toxicological studies cover the specifications cannot be drawn as the available data are not sufficient. [2] The environmental risk assessment is not finalised (see section 4)

* For cereals and oil seed rape, the pre-harvest interval is governed by the growing period remaining between the final application and harvest at crop maturity which may vary depending on local conditions. The residues at harvest are determined more by growth stage at final application than PHI in days.

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g.)

(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)	fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the
(c) <i>e.g.</i> biting and suckling insects, soil born insects, foliar fungi, weeds	rate for the variant (e.g. benthiavalicarb-isopropyl).
(d) <i>e.g.</i> wettable powder (WP), emulsifiable concentrate (EC), granule (GR)	(j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-
(e) GCPF Codes - GIFAP Technical Monograph No 2, 1989	8263-3152-4), including where relevant, information on season at time of application
(f) All abbreviations used must be explained	(k) Indicate the minimum and maximum number of application possible under practical conditions of use
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench	(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha
(h) Kind, <i>e.g.</i> overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment	instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
used must be indicated	(m) PHI - minimum pre-harvest interval

Methods of analysis)

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical as (analytical technique)	HPLC-UV
Impurities in technical as (analytical technique)	by HPLC-DAD, ion chromatography, Karl-Fischer- titration or by argentometric titration AHP/DAP: HPLC-UV or HPLC-fluorescence detection
Plant protection product (analytical technique)	HPLC-UV

Analytical methods for residues (Annex IIA, point 4.2) Residue definitions for monitoring purposes

Food of plant origin		carbendazim
Food of animal origin		sum of carbendazim and 5-OH-carbendazim expressed as carbendazim
Soil		carbendazim
Water	surface	carbendazim
	drinking/ground	carbendazim
Air		carbendazim
Body fluids and tissues		carbendazim

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	LC-MS/MS, 0.01 mg/kg carbendazim (raisin, wheat flour, lemon, cucumber) confirmation by second MS/MS transition, ILV included LC-MS/MS, 0.05 mg/kg carbendazim (wheat grain, wheat straw, rape seed), ILV provided
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	LC-MS/MS, 0.05 mg/kg carbendazim (meat, milk, eggs, fat), ILV provided LC-MS/MS, 0.01 mg/kg carbendazim (liver/kidney, only for confirmation) acceptable methods (primary method and ILV) for carbendazim in liver/kidney are missing acceptable methods (primary method, confirmatory method, ILV) for 5-OH-carbendazim in meat, egg, milk, fat, liver/kidney are missing
Soil (analytical technique and LOQ)	LC-UV, 0.02 mg/kg carbendazim LC-MS, 0.02 mg/kg carbendazim
Water (analytical technique and LOQ)	LC-MS/MS, 0.1 µg/L carbendazim (drinking water, ground water surface water)
Air (analytical technique and LOQ)	LC-MS/MS, 0.3 µg/m ³ carbendazim (ambient air, warm humid air)

Body fluids and tissues (analytical technique and LOQ)

LC-MS/MS, 0.05 mg/kg carbendazim (meat) LC-MS/MS, 0.0006 mg/L carbendazim (plasma), only for confirmation

Acceptable primary method for body fluids is open.

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

Active substance

RMS/peer review proposal

Impact on human and animal health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Rate and extent of oral absorption ‡	Rapid, about 80-85 %, based on oral and iv studies
Distribution ‡	Wide, highest residues in liver and kidney
Potential for accumulation ‡	No evidence for accumulation
Rate and extent of excretion ‡	About 85 % complete within 72 h (urine: \sim 60 %, faeces: \sim 25 %), more than 45 % within 6 h
Metabolism in animals ‡	Extensively metabolised (oxidation, sulphate and glucuronide conjugates)
Toxicologically relevant compounds ‡ (animals and plants)	Carbendazim and metabolites
Toxicologically relevant compounds ‡ (environment)	Carbendazim and metabolites

Acute toxicity (Annex IIA, point 5.2)

Rat LD₅₀ dermal **‡**

Rat LC_{50} inhalation ‡

Skin irritation **‡**

Eye irritation **‡**

Skin sensitisation ‡

> 10000 mg/kg bw > 2000 mg/kg bw> 5.8 mg/L air (4-h exposure, head/nose-only) Non-irritant Non-irritant Non-sensitiser (Buehler) Sensitiser (M&K) R43

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect ‡

Relevant oral NOAEL **‡**

Relevant dermal NOAEL **‡**

Relevant inhalation NOAEL **‡**

Genotoxicity ‡ (Annex IIA, point 5.4)

Liver (wt \uparrow , clinical chemistry, histological findings), testes (wt \downarrow , azoospermia at high doses), bw gain and feed intake \downarrow	
90-d, rat: 163 mg/kg bw/d 90-d, dog: 2.7 mg/kg bw/d	
10-d (7 d/wk) & 21-d (5 d/wk), rabbit (overall): local effects: 10 mg/kg bw/d	

systemic effects: 2000 mg/kg bw/d

No data - not required

Numerical chromosome aberrations both in	R46
vitro and in vivo as a result of the interference	(Muta. Cat. 2)
with mitotic spindle proteins. Threshold	Cat. 2)
concentration for an ugenic activity in vitro	
between 0.2-0.6 μg/mL; NOEL for aneuploidy	
induction in vivo: 50 mg/kg bw.	

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect ‡	Liver (wt \uparrow , histological findings, clinical chemistry), bw \downarrow , at higher doses in rats: RBC (slight anaemia, equivocal evidence); additionally in mice and dogs: mortality \uparrow
Relevant NOAEL ‡	2-yr, rat: 22 mg/kg bw/d 18-mo, mouse: approx. 22.5 mg/kg bw/d 2-yr, dog: 2.6 mg/kg bw/d
Carcinogenicity ‡	Liver tumours in CD-1 mice at 81 mg/kg bw/d and above and in Swiss mice at 45 mg/kg bw/d and above but not in NMRKf mice; no relevance for humans No evidence for carcinogenicity in rats (and dogs)

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction toxicity

Reproduction target / critical effect ‡	<u>Adult:</u> bw gain ↓ <u>Reproduction and fertility:</u> infertility in male rats, sperm numbers ↓, testicular atrophy and absence of spermatogenesis <u>Offspring:</u> bw ↓	R60 (Repr. Cat. 2)
Relevant parental NOAEL ‡	100 mg/kg bw/d	
Relevant reproductive NOAEL ‡	100 mg/kg bw/d	
Relevant offspring NOAEL ‡	100 mg/kg bw/d	

Developmental toxicity

Developmental target / critical effect ‡

Maternal: Rat: bw gain ↓, clinical signs of toxicity, abortions Rabbit: bw gain ↓, abortions Developmental: Rat: high resorption rate, foetal wt ↓, skeletal variations, malformations (e.g. hydrocephalus, anophthalmia) Rabbit: implantation ↓, resorptions ↑, live litter size ↓, skeletal malformations	R61 (Repr. Cat. 2)
Rat: 30 mg/kg bw/d Rabbit: 20 mg/kg bw/d	
Rat: 10 mg/kg bw/d Rabbit: 10 mg/kg bw/d	

Neurotoxicity (Annex IIA, point 5.7)

Acute neurotoxicity ‡	
-----------------------	--

Repeated neurotoxicity \ddagger

Relevant maternal NOAEL **‡**

Relevant developmental NOAEL **‡**

No d	ata – not required	
No d	ata – not required	

Delayed neurotoxicity ‡	Hen: no evidence for delayed neurotoxicity up to 5000 mg/kg bw. Clinical signs for neurotoxicity (ataxia, leg weakness) and systemic toxicity (salivation). NOAEL _{delayed neurotoxicity} : 5000 mg/kg bw NOAEL _{neurotoxicity} : 2500 mg/kg bw NOAEL _{systemic toxicity} : < 500 mg/kg bw
Other toxicological studies (Annex IIA, point	5.8)
Mechanism studies ‡	Rats and mice: hepatic enzyme induction (phase I and II) but in different extends in these species No or minor effects on cellular respiratory function in isolated rat liver mitochondria Interaction with microtubules, inhibition of polymerisation; NOAEL: 50 mg/kg bw
Studies performed on metabolites or impurities ‡	2-aminobenzimidazole (metabolite): Ames: negative Rat ALD oral: 3400 mg/kg bw 90-d, dog: 2.3 mg/kg bw/d (liver toxicity) 90-d, rat: 8.2 mg/kg bw/d (bw gain ↓) 5-hydroxy carbendazim (metabolite): Ames: negative 2.3-diaminophenazine (impurity): Ames: positive 2-amino-3-hydroxyphenazine (impurity): Ames: positive

Medical data ‡ (Annex IIA, point 5.9)

No adverse effects in manufacturing personnel reported. One poisoning incident reported in open literature.

Summary (Annex IIA, point 5.10)

	Value	Study	Safety factor
ADI ‡	0.02 mg/kg bw	Developmental, rat & rabbit	500
AOEL ‡	0.02 mg/kg bw/d	Developmental, rat & rabbit	500
ARfD-‡	0.02 mg/kg bw	Developmental, rat & rabbit	500

Dermal absorption ‡ (Annex IIIA, point 7.3)

Active substance	<u>Carbendazim (as):</u> 10 % (default, considering the available supplementary study results)
Formulation (DPX-N7872-205)	DPX-N7872-205: 100 % (default, no data available)
Exposure scenarios (Annex IIIA, point 7.2)	
Operator	German model
	Estimated exposure is below the AOEL (78% if gloves are worn when handling the product during mixing/loading and standard protective garment as well as sturdy footwear is worn during application).
	UK POEM
	Estimated exposure is above the AOEL (751% if gloves are worn during mixing/loading and during application).
Workers	German re-entry exposure estimate
	50 % of AOEL without PPE.
Bystanders	BBA data:
	Exposure estimate: 2.4 % of AOEL.

Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

Substance classified (Carbendazim)

RMS/peer review proposal <u>Directive 67/548/EEC:</u> T R46 (Muta. Cat. 2) R60 (Repr. Cat. 2) R61 (Repr. Cat. 2) <u>Additional proposal:</u> R43

Residues

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered	Fruit crops(peach),Pulses/oilseed(beans)Cereals(rice, with benomyl)Strawberry informative only
Rotational crops	Alfalfa, lettuce, radish, ryegrass, soybean plants
Metabolism in rotational crops similar to metabolism in primary crops?	yes
Processed commodities	Hydrolysis study
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Yes
Plant residue definition for monitoring	Carbendazim
Plant residue definition for risk assessment	Carbendazim
Conversion factor (monitoring to risk assessment)	none

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

Animals covered	Ruminants (cows) and poultry (laying hens)
Time needed to reach a plateau concentration in milk and eggs	Milk: 1 day Eggs: 14 days
Animal residue definition for monitoring	sum of carbendazim and 5-OH-carbendazim, expressed as carbendazim
Animal residue definition for risk assessment	Milk: Sum of carbendazim, 4- and 5-OH-carbendazim, calculated as carbendazim Other animal matrices: sum of carbendazim and 5-OH- carbendazim, expressed as carbendazim
Conversion factor (monitoring to risk assessment)	Milk: 2 Other animal matrices: not applicable
Metabolism in rat and ruminant similar (yes/no)	No (in rats 4-OH-carbendazim was not found, but Tox suggests that reference values set for carbendazim are also applicable to 4-OH-carbendazim)
Fat soluble residue: (yes/no)	no

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

Not relevant

Stability of residues (Annex IIA, point 6 Introduction, Annex IIIA, point 8 Introduction)

Green beans		3 months
Soybean, beans and rea	fined oil	18 months
Soybean, meal		9 months
Sugar beet, roots and t	ops	60 months
Tomatoes, fruits		30 months
Tomato, wet pomace,	juice and puree	6 months
Wheat straw		36 months
Wheat grain	New study reque	ested (data gap)

Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

	Ruminant:	Poultry:	Pig:
	Conditions of	requirement of feeding st	tudies
Expected intakes by livestock ≥ 0.1 mg/kg diet (dry weight basis) (yes/no - If yes, specify the level)	Yes 0.45/0.9 mg/kg DM (Dairy/beef cattle)	<0.1 0.037 mg/kg DM	Not calculated
Potential for accumulation (yes/no):	No	No	No
Metabolism studies indicate potential level of residues ≥ 0.01 mg/kg in edible tissues (yes/no)	No	No	No
	Feeding studies: Ruminant: 2 mg/kg diet Poultry: 5 mg/kg diet Residue levels in matrices : Maximum (mg/kg)		
	Residue levels in matri	ces : Maximum (mg/kg)	
	carbendazim / 4-OH / 5-OH-carbendazim	carbendazim / 4-OH / 5-OH-carbendazim	
Muscle	<0.01/<0.05/<0.01	<0.05/<0.05/<0.05	
Liver	<001/<0.05/<0.01	<0.05/<0.05/<0.05	
Kidney	<001/<0.05/<0.01	<0.05/<0.05/<0.05	
Fat	<001/0.09/0.02	<0.05/<0.05/<0.05	
Milk	<0.01/<0.01/0.01		
Eggs		<0.05/<0.05/<0.05	

Сгор	Northern/ Southern Region, field or glasshouse	Trials results relevant to the representative uses (a)	Recommendation/comments	MRL estimated from trials according to representative use	HR (mg/kg) (c)	STMR (mg/kg) (b)
Wheat, rye	North	11x <0.01, 2x <0.03, 10x <0.05, 0.05, 0.07	Trials from Northern Europe were used for	0.1	0.07	0.03
and triticale	South	4x <0.01, 2x 0.01, 2x 0.02, 0.06	MRL and risk assessment		0.06	0.01
Barley	North	4x <0.01,2x 0.01, 6x 0.02, 2x <0.05	R _{mac} : 0.06 mg/kg	0.1	0.05	0.02
	South	no data	R _{ber} : 0.04 mg/kg			
Maize	North	no data	~	0.01*	0.01	0.01
	South	5x <0.01				
Sugar beets	North	Roots: 8x <0.01 Leaves and tops: 4x <0.01, 0.01, 0.02, 0.03, 0.04		0.01*	0.01 (roots)	0.01 (roots)
	South	no data	-		0.04 (tops)	0.01 (tops)
Oilseed rape	North	7x <0.01,13x <0.02, <0.03,2x <0.05		0.05*	0.05	0.02
	South	no data				

Summary of residues data according to the representative uses on raw agricultural commodities and feedingstuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

(a) Numbers of trials in which particular residue levels were reported *e.g.* $3 \times < 0.01$, 1×0.01 , 6×0.02 , 1×0.04 , 1×0.08 , 2×0.1 , 2×0.15 , 1×0.17

(b) Supervised Trials Median Residue *i.e.* the median residue level estimated on the basis of supervised trials relating to the representative use

(c) Highest residue

Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

rev2 TMDI (% ADI) according to national (to be specified) diets IEDI (WHO European Diet) (% ADI) NEDI (specify diet) (% ADI) Factors included in IEDI and NEDI ARfD IESTI (% ARfD) according to EFSA PRIMo Model rev2 None	ADI	0.02 mg/kg bw/d
specified) diets IEDI (WHO European Diet) (% ADI) NEDI (specify diet) (% ADI) Factors included in IEDI and NEDI ARfD IESTI (% ARfD) according to EFSA PRIMo Model rev2 NESTI (% ARfD) according to national (to be specified) large portion consumption data	TMDI (% ADI) according to EFSA PRIMo Model rev2	Maximum TMDI: 5% ADI (DK Child)
NEDI (specify diet) (% ADI)NoneFactors included in IEDI and NEDINoneARfD0.02 mg/kg bwIESTI (% ARfD) according to EFSA PRIMo Model rev2Maximum IESTI: 7% ARfD (Wheat)NESTI (% ARfD) according to national (to be specified) large portion consumption dataImage: Constant of the specified of the s	TMDI (% ADI) according to national (to be specified) diets	
Factors included in IEDI and NEDINoneARfD0.02 mg/kg bwIESTI (% ARfD) according to EFSA PRIMo Model rev2Maximum IESTI: 7% ARfD (Wheat)NESTI (% ARfD) according to national (to be specified) large portion consumption dataImage: Constant of the second seco	IEDI (WHO European Diet) (% ADI)	
ARfD 0.02 mg/kg bw IESTI (% ARfD) according to EFSA PRIMo Model rev2 Maximum IESTI: 7% ARfD (Wheat) NESTI (% ARfD) according to national (to be specified) large portion consumption data IESTI (% ARfD) according to national (to be specified) large portion consumption data	NEDI (specify diet) (% ADI)	
IESTI (% ARfD) according to EFSA PRIMo Model rev2 Maximum IESTI: 7% ARfD (Wheat) NESTI (% ARfD) according to national (to be specified) large portion consumption data IESTI (% ARfD) according to national (to be specified) large portion consumption data	Factors included in IEDI and NEDI	None
rev2 NESTI (% ARfD) according to national (to be specified) large portion consumption data	ARfD	0.02 mg/kg bw
specified) large portion consumption data	IESTI (% ARfD) according to EFSA PRIMo Model rev2	Maximum IESTI: 7% ARfD (Wheat)
Factors included in IESTI and NESTI none	NESTI (% ARfD) according to national (to be specified) large portion consumption data	
	Factors included in IESTI and NESTI	none

Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

	Number	Processir	ng factors	Amount
Crop/ process/ processed product	of studies	Transfer factor	Yield factor	transferred (%)
Barley:				
pearl barley, malt, green malt, spent grain, trub and yeast	2	< 0.3		
pearling dust	2	1.2		
beer	2	< 0.06		

Proposed MRLs (Annex IIA, point 6.7, Annex IIIA, point 8.6)

Barley, rye, triticale and wheat	0.1 mg/kg
Maize	0.01* mg/kg
Sugar beets	0.01* mg/kg
Rape seeds	0.05* mg/kg
Products of animal origin	Not necessary when considering the supported uses

When the MRL is proposed at the LOQ, this should be annotated by an asterisk (*) after the figure.

Fate and behaviour in the environment

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1)

Mineralisation after 100 days ‡	Data gap identified for adequate route of aerobic degradation in soil
Non-extractable residues after 100 days ‡	Data gap identified for adequate route of aerobic degradation in soil
Metabolites requiring further consideration ‡ - name and/or code, % of applied (range and maximum)	Data gap identified for quantification/identification of three unidentified soil transformation products formed in one aerobic soil metabolism study. (2-AB one times >5% AR)

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation ‡	
Mineralisation after 100 days	anaerobic degradation study dosed with benomyl, a precursor of carbendazim ca max. 20 % after 180 d (estimated expecting a recovery of 100 %)
Non-extractable residues after 100 days	anaerobic degradation study dosed with benomyl, a precursor of carbendazim max. $20 - 28$ % after 180 d
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	No relevant metabolites (2-AB max 1,5 % after 180)
Soil photolysis ‡	
Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum)	No data, data gap identified

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies ‡

Parent	Aerob	ic condi	tions							
Soil type	X ¹	рН	t. °C	% MWHC	DT ₅₀ (d)	DT ₉₀ (d)	DT ₅₀ (c 20 °C pF2/10		χ2 error	Method of calculation
Sand 1		6.8	22	40	37	123	3	7	7	SFO
Loamy		5.2	22	40	37	226			3	DFOP
Sand		5.2	22	40	44	146	4	0	9	SFO
Sand 2		4.7	15	40	34	112	20		4	SFO
Sand 2		4.7	20	40	31	102	27	26*	5	SFO
Sand 2		4.7	25	40	26	86	33		5	SFO
Maximum (n=-3) as a endpoint	modelli	ng					4	0		
Worst case as trigger endpoint			1		37					

 $\mathrm{DT}_{50}\,$ re-calculated based on residue values using ModelMaker software

*geomean of DT_{50} values (n=3) for one soil tested at three temperatures

Field studies ‡

Parent	Aerobic condition	ıs							
Soil type (bare soil)	Location	X ¹	pН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	χ^2 error	DT ₅₀ (d) 20 °C, 10pKa	Method of calculation
Silty Sand	D-Frankfurt- Schwanheim		5.8	0-20	78	257	13	50	SFO
Loam	D-Gersthofen		5.6	0-20	11	36	20	14*	SFO
Loam	D- Bornheim		6.9	0-20	18	59	30	13	SFO
Loamy sand	D-Stelle		4.8	0-20	16	54	22	10	SFO
Geometric mean (d)					22	54		17	
worst case(d)					78	257		50	

*Modelling DT_{50} = FOMC $DT_{90}/3.32$

pH dependence ‡ (yes / no) (if yes type of dependence) no not triggered

Soil accumulation and plateau concentration **‡**

¹ X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.

Laboratory studies **‡**

Parent	Anae	Anaerobic conditions					
Soil type	X ²	рН	t. °C	DT ₅₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa	St. (r ²)	Method of calculation
Sandy loam		6.5	25	$h_{ath} > 100 d$			antimation
Silt loam		6.4	25	both >180 d			estimation
Geometric mean/me	dian						

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Parent ‡							
Soil Type	OC %	Soil pH	K _d (mL/g)	K _{oc} (mL/g)	K _f (mL/g)	K _{foc} (mL/g)	1/n
Sand	0.8	7.0			1.6	200	0.87
Sand	2.58	6.8			6.3	246	1.12
Sandy loam	1.0	5.2			2.3	230	0.91
Arithmetic mean						225	0.97
pH dependence, Yes or No			no				

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching ‡	Spitzer 1990 Eluation (mm): 393 mm Time period (d): 2 d,
	Leachate: < 0.14 % of HOE 017411 in leachate
Aged residues leaching ‡	no additional data required
Lysimeter/ field leaching studies ‡	no additional data required

PEC (soil) (Annex IIIA, point 9.1.3)

Parent Method of calculation DT_{50} (d): 78 days Kinetics: SFO, maximum field (n = 4), not normalised

² X This column is reserved for any other property that is considered to have a particular impact on the degradation rate.

Application data

Crop: cereals (late) Depth of soil layer: 5 cm Soil bulk density: 1.5 g/cm³ % plant interception: 70 % and 90 % Number of applications: 2 Interval (d): 14 Application rate(s): 100 g as/ha

PEC _(s) (mg/kg)		Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		-/-		0.049	
Short term	24 h	-/-	-/-	0.048	0.048
	2 d	-/-	-/-	0.047	0.048
	4 d	-/-	-/-	0.046	0.048
Long term	7 d	-/-	-/-	0.043	0.047
	28 d	-/-	-/-	0.033	0.043
	50 d	-/-	-/-	0.021	0.039
	100 d	-/-	-/-	0.009	0.032
Plateau concentrati	on	-/-			

Parent

Method of calculation

Application data

 DT_{50} (d): 78 days Kinetics: SFO, maximum field (n = 4), not normalised

Crop: maize Depth of soil layer: 5 cm Soil bulk density: 1.5 g/cm³ % plant interception: 75 % and 75 % Number of applications: 2 Interval (d): 21 Application rate(s): 100 g as/ha

Peer Review of the pesticide risk assessment of the active substance carbendazim

PEC _(s) (mg/kg)		Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		-/-		0.061	
Short term	24 h	-/-	-/-	0,060	0,061
	2 d	-/-	-/-	0,059	0,060
	4 d	-/-	-/-	0,057	0,060
Long term	7 d	-/-	-/-	0,054	0,059
	28 d	-/-	-/-	0,042	0,054
	50 d	-/-	-/-	0,027	0,049
	100 d	-/-	-/-	0,011	0,040
Plateau concentratio	on	-/-			

Application data

Crop: sugar beet (NE) Depth of soil layer: 5 cm Soil bulk density: 1.5 g/cm3 % plant interception: 70 % and 75 % Number of applications: 2 Interval (d): 28 Application rate: 75 g as/ha

PEC _(s) (mg/kg)		Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		-/-		0.033	
Short term	24 h	-/-	-/-	0.033	0.033
	2 d	-/-	-/-	0.033	0.033
	4 d	-/-	-/-	0.031	0.033
Long term	7 d	-/-	-/-	0.029	0.032
	28 d	-/-	-/-	0.023	0.030
	50 d	-/-	-/-	0.015	0.027
	100 d	-/-	-/-	0.006	0.022
Plateau concentratio	on	-/-			

Application data

Crop: sugar beet (SE) Depth of soil layer: 5 cm Soil bulk density: 1.5 g/cm3 % plant interception: 70 %, 90 % and 90 % Number of applications: 3 Interval (d): 14 Application rate: 62.5 g as/ha

PEC _(s) (mg/kg)		Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial		-/-		0.035	
Short term	24 h	-/-	-/-	0.035	0.035
	2 d	-/-	-/-	0.034	0.035
	4 d	-/-	-/-	0.033	0.035
Long term	7 d	-/-	-/-	0.031	0.034
	28 d	-/-	-/-	0.024	0.031
	50 d	-/-	-/-	0.016	0.028
	100 d	-/-	-/-	0.006	0.023
Plateau concentrati	on	-/-			

Application data

Crop: oilseed rape Depth of soil layer: 5 cm Soil bulk density: 1.5 g/cm3 % plant interception: 40 % and 80 % Number of applications: 2 Interval (d): 21 Application rate: 100 g as/ha

PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	-/-		0.093	
Short term 24 h	-/-	-/-	0.092	0.093
2 d	-/-	-/-	0.091	0.092
4 d	-/-	-/-	0.087	0.091
Long term 7 d	-/-	-/-	0.082	0.090
28 d	-/-	_/_	0.064	0.082

Peer Review of the pesticide risk assessment of the active substance carbendazim

PEC _(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
50 d	-/-	-/-	0.041	0.075
100 d	-/-	-/-	0.017	0.062
Plateau concentration	-/-			

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolytic degradation of the active substance and metabolites $> 10 \% \ddagger$	pH 5: > 350 d at 22 - 25 °C Met 2-AB: 3 % AR (30 d)
	pH 7: > 350 d at 22 - 25 °C Met 2-AB: 3 % AR (30 d)
	pH 9: 54 - 124 d at 20- 25 °C Met 2-AB: 30 % AR (30 d)
Photolytic degradation of active substance and metabolites above 10 % \ddagger	no photolytic degradation during 7 days at 25 °C
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	not calculated
Readily biodegradable ‡ (yes/no)	not readily biodegradable

Parent		Distribution (e.g. max in water 103.2 % AR after 0 d. Max. in sediment. 68 % AR after 28 d, system)								
Water / sediment system	pH water phase	pH sed.	t. °C	DT ₅₀ / DT ₉₀ whole sys.	χ^2 error	DT ₅₀ / DT ₉₀ water	St. (r ²)	DT ₅₀ / DT ₉₀ sed.	S t.	Method of calculation
Bickenbach	8.5	8.0	20	15.1/ 50	11					SFO
						10.8/36	0.995	n.d.		1 st order
Unter	8.1	7.5	20	75.2/249.7	12					SFO
Widdersheim						5.8/ 19.2	0.965	n.d.		1 st order
Geometric mean/median			33.7		7.9					

Degradation in water / sediment

Mineralisation and non extractable residues								
Water / sediment system	pH water phase	pH sed.	Mineralisation x % after 120 d (end of the study)	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after 120 d (end of the study)			
Bickenbach	8.5	8.0	20.4	63.4 (62 d)	55.2			
Unter Widdersheim	8.1	7.5	4.7	59.4 (120 d)	59.4			

PEC surface water and PEC sediment (Annex IIIA, point 9.2.3)

Carbendazim Parameters used in FOCUS _{sw} step 1 and 2	Version control no. of FOCUS calculator: ver. 1.1, FOCUS 2002
511 1	Molecular weight (g/mol): 191.1
	Water solubility (mg/L): 6
	K _{OC} /K _{OM} (L/kg): 225 (arithmetic mean)
	DT ₅₀ soil (d): 30 days (DegT50 lab used in STEP 1&2 calculations in accordance with FOCUS SFO)
	DT ₅₀ water/sediment system (d): 75 (representative worst case from sediment water studies)
	DT ₅₀ water (d): 1000
	DT ₅₀ sediment (d): 75
	Crop interception (%): none

Parameters used in FOCUS _{sw} step 3 Version control no.'s of FOCUS software: ver. FOCUS 2002						
	Vapour pressure: 9×10^{-5}					
	Water solubility (mg/L): 8					
	DT_{50} soil (d): 40 days (wors	st case	DegT50 lab	as		
	reliable soilDT50 values are					
	K _{om} /K _{oc} : 225					
	1/n: 0.97(Freundlich expone solids or sediment respective	-	eral or for so	oil, susp.		
	DT ₅₀ water/sediment system case from sediment water stu		5 (representa	ative worst		
	DT ₅₀ water (d): 75	,				
	DT ₅₀ sediment (d): 1000					
Parameters used in FOCUS _{sw} step 4	Input parameters see FOCUS following mitigation measur -10 m drift buffer -10 m drift buffer and runoff FOCUS landscape and mitig -20 m drift buffer and runoff FOCUS landscape and mitig	res if reduction if reduction if reduction if the second s	equired: tion accordine report tion accordine	ng to the -		
	*90th percentile worst case values for reduction efficiencies for different widths of vegetated buffers and different phases of surface runoff [FOCUS (2007)]					
	Buffer width (m)		10 - 12	18 - 20		
	Reduction in volume of runoff water (%) Reduction in mass of pesticide		60 60	80 80		
	transported in aqueous phase	e (%)				
	Reduction in mass of eroded	l	85	95		
	sediment (%) Reduction in mass of pesticide transported in sediment phase (%)		85	95		
Application rate	Crop: winter oilseed rape					
	Crop interception: 40 and 80) %				
	Number of applications: 2					
	Interval (d): according to PA	AT (> 1	84 d)			
	Application rate(s): 2×100	g as/ha	a			
	Application window: applica spring application	ations	in autumn fo	llowed by		
	Location	App	lication Win	dow		
	D2	26-N	far -6-Nov			
	D3	31 N	1ar – 24 Nov	τ		
	D4 20-Apr – 25 Oct					
	D5 16-Mar – 11-Nov					
	R1	21-N	1ar – 26-Oct			
		L				

Application rate	Crop: spring oilseed rape				
	Crop interception: 40 and 80	%			
	Number of applications: 2				
	Interval (d): according to PA				
	Application rate(s): 100 g as/ha				
	Application window: applica	tions in spring			
	Location	Application Window			
	D1	07-Jun -28-Jul			
	D3	29-Apr – 19-Jun			
	D4	20-May – 10-Jul			
	D5	03-Apr – 24-May			
	R1	29-Apr – 19-Jun			
Application rate	Crop: winter oilseed rape				
	Crop interception: 80 and 80	%			
	Number of applications: 2				
	Interval (d): according to PA				
	Application rate(s): 100 g as				
	Application window: applications in spring				
	Location	Application Window			
	D2	26-Mar -16-May			
	D3	31 Mar – 21-May			
	D4	20-Apr – 10-Jun			
	D5	16-Mar – 06-May			
	R1	21-Mar – 11-May			
Application rate	Crop: spring cereals				
	Crop interception: 70 and 90	%			
	Number of applications: 2				
	Interval (d): according to PA				
	Application rate(s): 100 g as				
	Application window: applica				
	Location	Application Window			
	D1	27-May -10-Jul			
	D3	12-May – 25-Jun			
	D4	18-May – 1-Jul			
	D5	11-Apr – 25-May			
	R4	11-Apr – 25-May			
Application rate	Crop: winter careals]			
Application rate	Crop: winter cereals Crop interception: 70 and 90 %				
	Number of applications: 2	/0			
	rumber of applications. 2				

Interval (d): according to PAT (14 days) Application rate(s): 100 g as/ha Application window: applications in spring						
Location	Application Window					
D1	18-May -1-Jul					
D2	29-Apr – 12-Jun					
D3	7-May – 26-Jun					
D4	13-May – 26-Jun					
D5	6-Apr – 20-May					
D6	22-Mar – 5-May					
R1 22-Apr -5-Jun						
R3 23-Mar – 6-May						
R4	6-Apr – 20-May					

FOCUS STEP 1 Scenario	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$		
	overall maximum	Actual	TWA	Actual	TWA	
	0 h	53.121		115.385		
	24 h	52.660	52.891	118.486	116.935	
	2 d	52.624	52.767	118.404	117.690	
	4 d		52.677	118.240	118.006	
	7 d	52.442	52.600	117.994	118.054	

Spring and winter cereals

FOCUS STEP 2	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)		
Scenario	overall maximum	Actual	TWA	Actual	TWA	
Northern EU	0 h	10.500		23.185		
	24 h	10.393	10.447	23.123	23.154	
Southern EU	0 h	9.385		20.689		
	24 h	9.274	9.329	20.634	20.662	

autumn application followed by spring application to winter oilseed rape; 2×100 g as/ha

FOCUS STEP 3	Water	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D2	ditch	0 h	4.981		9.335	
D2	stream	0 h	3.135		5.413	
D3	ditch	0 h	0.556		0.204	

Peer Review of the pesticide risk assessment of the active substance carbendazim

FOCUS STEP 3 Scenario	Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
	body	overall maximum	Actual	TWA	Actual	TWA
D4	pond	0 h	0.831		2.343	
D4	stream	0 h	1.343		1.059	
D5	pond	0 h	0.588		1.807	
D5	stream	0 h	0.631		0.531	
R1	pond	0 h	0.068		0.227	
R1	stream	0 h	1.949		0.417	

autumn application followed by spring application to winter oilseed rape; 2×100 g as/ha 10 m drift buffer

FOCUS STEP 4	Water body	Day after overall	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)		
Scenario		maximum	Actual	TWA	Actual	TWA	
D2	ditch	0 h	4.981		9.265		
D2	stream	0 h	3.135		5.369		
D3	ditch	0 h	0.075		0.031		
D4	pond	0 h	0.828		2.324		
D4	stream	0 h	1.343		1.057		
D5	pond	0 h	0.585		1.789		
D5	stream	0 h	0.631		0.527		
R1	pond	0 h	0.062		0.207		
R1	stream	0 h	1.949		0.414		

Single application to winter oilseed rape; 100 g as/ha, 10 m drift buffer							
FOCUS STEP 4	Water body	Day after overall	PEC _{sw} (µg/L)		PEC _{SED} (µg/kg)		
Scenario		maximum	Actual*	TWA	Actual	TWA	
D3	ditch	0 h	0.092				

*only global maximum PECsw caused by drift reported since this is the relevant endpoint for aquatic risk assessment

autumn application followed by spring application to winter oilseed rape; 2×100 g as/ha 10 m drift buffer and runoff reduction						
FOCUS STEP 4	Water body	Day after overall	$PEC_{SW}(\mu g/L) \qquad PEC_{SED}(\mu g/kg)$			
Scenario		maximum	Actual	TWA	Actual	TWA

Peer Review of the pesticide risk assessment of the active substance carbendazim

R1	pond	0 h	0.030	0.104	
R1	stream	0 h	0.836	0.186	

autumn application followed by spring application to winter oilseed rape; 2×100 g as/ha 20 m drift buffer and runoff reduction						
FOCUS STEP 4	Water body	Day after overall	$PEC_{SW}(\mu g/L) \qquad PEC_{SED}(\mu g/kg)$			
Scenario		maximum	Actual	TWA	Actual	TWA
R1	stream	0 h	0.436		0.098	

$2\times spring application to spring oilseed rape; <math display="inline">2\times 100~g$ as/ha

FOCUS STEP 3	Water	Day after	PEC _{sw} (µg/L)	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
Scenario	body	y overall maximum	Actual	TWA	Actual	TWA	
D1	ditch	0 h	1.622		4.923		
D1	stream	0 h	1.107		2.470		
D3	ditch	0 h	0.555		0.198		
D4	pond	0 h	0.239		0.754		
D4	stream	0 h	0.474		0.292		
D5	pond	0 h	0.109		0.446		
D5	stream	0 h	0.508		0.192		
R1	pond	0 h	0.199		0.402		
R1	stream	0 h	1.662		0.678		

$2\times$ spring application to spring oilseed rape; 2×100 g as/ha 10 m drift buffer

FOCUS STEP 4	Water	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
Scenario	body	dy overall maximum	Actual	TWA	Actual	TWA
D1	ditch	0 h	1.622		4.457	
D1	stream	0 h	1.107		2.464	
D3	ditch	0 h	0,075		0.029	
D4	pond	0 h	0.237		0.737	
D4	stream	0 h	0.294		0.290	
D5	pond	0 h	0.102		0.431	
D5	stream	0 h	0.117		0.171	
R1	pond	0 h	0.190		0.379	
R1	stream	0 h	1.662		0.672	

FOCUS STEP 4	Water		PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
Scenario	body	overall maximum	Actual*	TWA	Actual	TWA
D3	ditch	0 h	0.092			
D5	pond	0 h	0.105			
D5	stream	0 h	0.137			

Single spring application to spring oilseed rape; 100 g as/ha 10 m drift buffer

*only global maximum PECsw caused by drift reported since this is the relevant endpoint for aquatic risk assessment

$2\times$ spring application to spring oilseed rape; 2×100 g as/ha 10 m drift buffer and runoff reduction

FOCUS STEP 4	Water	-	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R1	pond	0 h	0.086		0.176	
R1	stream	0 h	0.757		0.262	

$2\times$ spring application to spring oilseed rape; 2×100 g as/ha 20 m drift buffer and runoff reduction

FOCUS STEP 4	Water	•	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R1	pond	0 h	0.045		0.095	
R1	stream	0 h	0.397		0.134	

$2\times spring application to winter oilseed rape; <math display="inline">2\times 100$ g as/ha

FOCUS STEP 3	Water	Day after	PEC _{SW} (µg/L)		$PEC_{SED}(\mu g/kg)$	
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D2	ditch	0 h	3.250		4.962	
D2	stream	0 h	2.042		2.549	
D3	ditch	0 h	0.555		0.203	
D4	pond	0 h	0.129		0.429	
D4	stream	0 h	0.472		0.167	
D5	pond	0 h	0.101		0.391	
D5	stream	0 h	0.520		0.204	
R1	pond	0 h	0.102		0.282	
R1	stream	0 h	1.839		0.417	
R3	stream	0 h	1.478		0.305	

FOCUS STEP 4	Water	Day after	$PEC_{SW}(\mu g/L)$	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
Scenario	body overall maximum	Actual	TWA	Actual	TWA		
D2	ditch	0 h	3.250		4.886		
D2	stream	0 h	2.042		2.502		
D3	ditch	0 h	0.075		0.029		
D4	pond	0 h	0.128		0.413		
D4	stream	0 h	0.182		0.166		
D5	pond	0 h	0.089		0.376		
D5	stream	0 h	0.119		0.158		
R1	pond	0 h	0.095		0.257		
R1	stream	0 h	1.839		0.414		
R3	stream	0 h	1.478		0.296		

$2\times$ spring application to winter oilseed rape; 2×100 g as/ha 10 m drift buffer

Single spring application to winter oilseed rape; 100 g as/ha 10 m drift buffer

FOCUS STEP 4	4	Day after	$PEC_{SW}(\mu g/L)$	$EC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
Scenario	body	overall maximum	Actual*	TWA	Actual	TWA	
D3	ditch	0 h	0.091				
D5	pond	0 h	0.094				
D5	stream	0 h	0.138				

*only global maximum PECsw caused by drift reported since this is the relevant endpoint for aquatic risk assessment

$2 \times$ spring application to winter oilseed rape; 2×100 g as/ha
10 m drift buffer

FOCUS STEP 4	FOCUS STEP 4 Water	Day after $PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$)
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R1	pond	0 h	0.045		0.129	
R1	stream	0 h	0.834		0.186	
R3	stream	0 h	0.655		0.133	

$2 \times$ spring application to winter oilseed rape; 2×100 g as/ha 10 m drift buffer

FOCUS STEP 4	Water	-	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R1	stream	0 h	0.436		0.098	
R3	stream	0 h	0.340		0.069	

FOCUS STEP 3 Scenario	Water	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
	body	overall maximum	Actual	TWA	Actual	TWA
D1	ditch	0 h	1.450		5.300	
D1	stream	0 h	0.981		2.461	
D3	ditch	0 h	0.555		0.208	
D4	pond	0 h	0.196		0.645	
D4	stream	0 h	0.470		0.253	
D5	pond	0 h	0.100		0.402	
D5	stream	0 h	0.505		0.176	
R4	stream	0 h	2.952		1.057	

$2 \times$ spring application to spring cereals; 2×100 g as/ha

$2\times$ spring application to spring cereals; 2×100 g as/ha 10 m drift buffer

FOCUS STEP 4 Scenario	Water	Day after	, and a second		$PEC_{SED}(\mu g/kg)$	
	body	overall maximum	Actual	TWA	Actual	TWA
D1	ditch	0 h	1.450		4.803	
D1	stream	0 h	0.981		2.452	
D3	ditch	0 h	0.075		0.030	
D4	pond	0 h	0.195		0.629	
D4	stream	0 h	0.231		0.252	
D5	pond	0 h	0.091		0.387	
D5	stream	0 h	0.116		0.155	
R4	stream	0 h	2.952		1.049	

Single spring application to spring cereals; 100 g as/ha 10 m drift buffer

FOCUS STEP 4WaterScenariobody	-	PEC _{SW} (µg/L)		$PEC_{SED}(\mu g/kg)$		
	overall maximum	Actual*	TWA	Actual	TWA	
D3	ditch	0 h	0.092			
D5	pond	0 h	0.094			
D5	stream	0 h	0.135			

*only global maximum PECsw caused by drift reported since this is the relevant endpoint for aquatic risk assessment

$2\times$ spring application to spring cereals; 2×100 g as/ha 10 m drift buffer and runoff reduction

FOCUS STEP 4 Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg))	
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R4	stream	0 h	1.337		0.468	

$2\times$ spring application to spring cereals; 2×100 ag s/ha 20 m drift buffer and runoff reduction

FOCUS STEP 4 Water		Day after $PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg))
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R4	stream	0 h	0.699	0.245	0.245	

$2 \times$ spring application to winter cereals; 2×100 g as/ha

FOCUS STEP 3	Scenario body OV	Day after	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg	;)
Scenario		anario body	overall maximum	Actual	TWA	Actual
D1	ditch	0 h	1.321		3.720	
D1	stream	0 h	0.832		1.945	
D2	ditch	0 h	2.669		4.950	
D2	stream	0 h	1.670		2.322	
D3	ditch	0 h	0.555		0.200	
D4	pond	0 h	0.154		0.504	
D4	stream	0 h	0.474		0.192	
D5	pond	0 h	0.130		0.473	
D5	stream	0 h	0.522		0.232	
D6	ditch	0 h	0.594		0.632	
R1	pond	0 h	0.190		0.407	
R1	stream	0 h	2.474		0.661	
R3	stream	0 h	2.992		1.091	
R4	stream	0 h	2.957		1.049	

$2\times$ spring application to winter cereals; 2×100 g as/ha 10 m drift buffer

FOCUS STEP 4	Water Day after		$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D1	ditch	0 h	1.321		3.356	
D1	stream	0 h	0.832		1.945	
D2	ditch	0 h	2.669		4.576	
D2	stream	0 h	1.670		2.287	

Peer Review of the pesticide risk assessment of the active substance carbendazim

FOCUS STEP 4	Water	Day after	PEC _{SW} (µg/L)		PEC _{SED} (µg	$PEC_{SED}(\mu g/kg)$	
Scenario	body	overall maximum	Actual	TWA	Actual	TWA	
D3	ditch	0 h	0.075		0.029		
D4	pond	0 h	0.152		0.486		
D4	stream	0 h	0.204		0.190		
D5	pond	0 h	0.117		0.448		
D5	stream	0 h	0.129		0.209		
D6	ditch	0 h	0.080		0.092		
R1	pond	0 h	0.181		0.383		
R1	stream	0 h	2.474		0.656		
R3	stream	0 h	2.992		1.076		
R4	stream	0 h	2.957		1.041		

Single spring application to winter cereals; 100 g as/ha 10 m drift buffer

FUCUS STEP 4	Water	overall	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$		
	body		Actual*	TWA	Actual	TWA	
D3	ditch	0 h	0.092				
D5	pond	0 h	0.122				
D5	stream	0 h	0.149				
D6	ditch	0h	0.098				

*only global maximum PECsw caused by drift reported since this is the relevant endpoint for aquatic risk assessment

 $2\times$ spring application to winter cereals; 2×100 g as/ha 10 m drift buffer and runoff reduction

FOCUS STEP 4 Water	Day after $PEC_{SW}(\mu g/L)$		PEC _{SED} (µs		kg)	
Scenario		overall maximum	Actual	TWA	Actual	TWA
R1	stream	Oh	1.125		0.288	
R3	stream	Oh	1.366		0.454	
R4	stream	0 h	1.340		0.464	

$2 \times$ spring application to winter cereals; 2×100 ag s/ha 20 m drift buffer and runoff reduction

FOCUS STEP 4	Water	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R1	stream	0h	0.590		0.150	
R3	stream	0h	0.717		0.236	

FOCUS STEP 4	Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)
Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R4	stream	0 h	0.701		0.243	

Metabolite 2-AB	Molecular weight: 133.15
Parameters used in FOCUS step 1 and 2	Water solubility (mg/L): 6
	Soil or water metabolite: $< 10 \%$
	K _{oc} /K _{om} (L/kg): 175 (estimated with PCKOCWIN Program)
	DT ₅₀ soil (d): no entry via soil (If necessary, Lab or field. In accordance with FOCUS SFO)
	DT ₅₀ water/sediment system (d): 300 (representative worst case from sediment water studies)
	DT ₅₀ water (d): 1000
	DT ₅₀ sediment (d): 300
	Crop interception (%): none
	Maximum occurrence observed (% molar basis with respect to the parent): 6.3
	Water:< LOD
	Sediment: 6.3
Application rate	Crop: spring and winter cereals and oilseed rape
	Number of applications: 2
	Interval (d): 21
	Application rate(s): 100 g as/ha
	Depth of water body: 30 cm
	Application window: spring application
Main routes of entry	drift

FOCUS STEP 1 Scenario	Day after overall maximum	PEC _{sw} (µg/L	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
		Actual	TWA	Actual	TWA	
	0 h	0.081		0		
	24 h	0.065	0.073	0.114	0.057	
	2 d	0.065	0.069	0.114	0.086	
	4 d	0.065	0.067	0.114	0.100	
	7 d	0.065	0.066	0.114	0.106	
	14 d	0.065	0.066	0.113	0.110	
	21 d	0.064	0.065	0.113	0.111	
	28 d	0.064	0.065	0.112	0.111	
	42 d	0.064	0.065	0.111	0.111	

PEC ground water (Annex IIIA, point 9.2.1)

for FOCUSgw modelling, values used -
Addelling using FOCUS model(s), with appropriate $FOCUS_{gw}$ cenarios, according to FOCUS guidance.
Iodel(s) used: FOCUS PEARL 2.2.2
cenarios (list of names): 9 EU-scenarios
Crop: Winter cereals, spring and winter oilseed rape (see elow)
For the parent soil DT_{50lab} : 40 d (normalisation to 10kPa, 20 C with Q10 of 2.2).
L_{OC} : parent, average 225 mL/g, $^{1}/_{n} = 0.97$
Aetabolites: no
Crop: winter oilseed rape
application rate: 200 g/ha.(autumn) + 250 g/ha (spring)
No. of applications: 2, interval $> 28 d^3$
Time of application (month or season): 1st appl. BBCH 14 (40 6 interception), 2nd appl.: BBCH 20 (80 % interception)
Crop: spring oilseed rape
application rate: 100 g/ha
No. of applications: 2, interval 21 d
Time of application (month or season): 1st appl. BBCH 14 (40 6 interception), 2nd appl.: BBCH 20 (80 % interception)
Crop: cereals
application rate: 250 g/ha
No. of applications: 2, interval 14 d
Time of application (month or season): 1st appl. BBCH 30-39 70 % interception), 2nd appl. BBCH 40 (90 % interception)

³ for winter oil seed rape the minimum interval indicated in the GAP table is 21d

wint	Scenario	Parent (µg/L)
er oi		FOCUS PEARL
winter oilseed rape	Chateaudun	0.003
l rape	Hamburg	0.029
()	Jokioinen	-
	Kremsmunster	0.018
	Okehampton	0.032
	Piacenza	0.081
	Porto	< 0.001
	Sevilla	-
	Thiva	-

PEC_{gw} - FOCUS modelling results (80 $^{\rm th}$ percentile annual average concentration at 1 m)

sprii	Scenario	Parent (µg/L)	
ng oi		FOCUS PEARL	
spring oilseed rape	Chateaudun	-	
rape	Hamburg	-	
, i i i i i i i i i i i i i i i i i i i	Jokioinen	0.001	
	Kremsmunster	-	
	Okehampton	0.011	
	Piacenza	-	
	Porto	< 0.001	
	Sevilla	-	
	Thiva	-	

Peer Review of the pesticide risk assessment of the active substance carbendazim

wint	Scenario	Parent (µg/L)		
er ce		FOCUS PEARL		
winter cereals	Chateaudun	0.001		
•-	Hamburg	0.013		
	Jokioinen	0.001		
	Kremsmunster	0.008		
	Okehampton	0.013		
	Piacenza	0.022		
	Porto	< 0.001		
	Sevilla	< 0.001		
	Thiva	< 0.001		

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

n air ‡ Not studied
direct phototransformation Not studied
dative degradation in air ‡ according to Atkinson (AOP, version 1.91) DT50 = 0.640 h (0.053 days) with an OH-radical concentration of 1.5×10^{6} /cm ³ (12 h-average) DT50 = 1.919 h (0.080 days) with an OH-radical concentration of 0.5×10^{6} /cm ³ (24 h-average) k _{OH} -value = 200.6528 × 10 ⁻¹² cm ³ × molecule ⁻¹ × s ⁻¹
from plant surfaces (BBA guideline): 4 % overall loss after 6 hours (not relevant for further assessment)
from soil surfaces (BBA guideline): 21 % overall loss after 6 hours (not relevant for further assessment)
None

Method of calculation

vapour pressure: 9×10^{-5} Pa at 20 °C Henry's Law Constant: $3,6 \times 10^{-3}$ Pa x m³ x mol⁻¹. volatilisation from plants and soil: no relevant path

PEC_(a)

Maximum concentration

0.175 mg as/kg

Residues requiring further assessment

Environmental occurring metabolite requiring further assessment by other disciplines (toxicology and ecotoxicology) or for which a groundwater Soil: provisionally carbendazim only; however, a data gap was identified for an adequate route of aerobic

exposure assessment is triggered.

degradation in soil

Surface Water: provisionally carbendazim only; however, a data gap was identified for the identification/quantification of potential soil major metabolites that would trigger further assessment regarding surface water contamination via runoff and drainage Sediment: provisionally carbendazim only; however, a data gap was identified for the identification/quantification of potential soil major metabolites that would trigger further assessment regarding surface water contamination via runoff and drainage Ground water: -provisionally carbendazim only; however, a data gap was identified for the identification/quantification of potential soil metabolites that would trigger further assessment regarding groundwater contamination Air: carbendazim

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)	No data
Surface water (indicate location and type of study)	No data
Ground water (indicate location and type of study)	No data
Air (indicate location and type of study)	No data

No data	
No data	
No data	
No data	

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

R53

Effects on non-target species

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species	Test substance	Time scale	Endpoint (mg/kg bw/day)	Endpoint (mg/kg feed)
Birds ‡				
Colinus virginianus	as	Acute	$LD_{50} > 2250$	-/-
Anas platyrhynchos	as	Short-term	$LDD_{50} = 615$	$LC_{50}\sim 5000$
Anas platyrhynchos	as	Long-term	NOEL = 26.4	NOEC = 212
Mammals ‡				
Dog	as	Acute	$LD_{50} > 5000$	-/-
Rat	as	Long-term	NOEL = 22.5	-/-
Additional higher tier studies	ŧ			
-/-				

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Cereals, 2 × 100 g as/ha								
Indicator species/Category ²	Time scale	ETE	TER ¹	Annex VI Trigger ³				
Tier 1 (Birds)								
Small insectivoreAcute5.406>41610								
Small insectivore	Short-term	3.015	204	10				
Small insectivore	Long-term	3.015	8.8	5				
Tier 1 (Mammals)								
Insectivore Acute 0.882 > 5672 10								
Insectivore	Long-term	0.321	70	5				

Sugar beet (NE), 2×75 g as/ha

Indicator species/Category ²	Time scale	ETE	TER ¹	Annex VI Trigger ³					
Tier 1 (Birds)	Tier 1 (Birds)								
Small insectivore	Acute	4.055	> 555	10					
Medium herbivore	Acute	5.455	> 413	10					
Small insectivore	Short-term	2.261	272	10					
Medium herbivore	Short-term	2.508	245	10					
Small insectivore	Long-term	2.261	11.7	5					
Medium herbivore	Long-term	1.329	19.9	5					
Tier 1 (Mammals)									

Indicator species/Category ²	Indicator species/Category ² Time scale		TER ¹	Annex VI Trigger ³
Medium herbivore	Acute	1.991	> 2512	10
Medium herbivore	Long-term	0.483	47	5

Sugar beet (SE), 3 × 62.5 g as/ha

Indicator species/Category ²	Time scale	ETE	TER^1	Annex VI Trigger ³					
Tier 1 (Birds)	Tier 1 (Birds)								
Small insectivore	Acute	3.379	> 666	10					
Medium herbivore	Acute	5.372	> 419	10					
Small insectivore	Short-term	1.884	326	10					
Medium herbivore	Short-term	2.850	216	10					
Small insectivore	Long-term	1.884	14.0	5					
Medium herbivore	Long-term	1.510	17.5	5					
Tier 1 (Mammals)									
Medium herbivore	Acute	1.960	> 2551	10					
Medium herbivore	Long-term	0.555	41	5					

Oilseed rape, 2×100 g as/ha (covering also maize)

Indicator species/Category ²	Time scale	ETE	TER^1	Annex VI Trigger ³
Tier 1 (Birds)				
Small insectivore	Acute	5.406	> 416	10
Medium herbivore	Acute	7.934	> 284	10
Small insectivore	Short-term	3.015	204	10
Medium herbivore	Short-term	3.952	156	10
Small insectivore	Long-term	3.015	8.8	5
Medium herbivore	Long-term	2.095	12.6	5
Tier 1 (Mammals)	·	·		·
Medium herbivore	Acute	2.895	> 1727	10
Medium herbivore	Long-term	0.765	29	5

¹ in higher tier refinement provide brief details of any refinements used (e.g. residues, PT, PD or AV)

² for cereals indicate if it is early or late crop stage

³ If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance (e.g. many single species data), it should appear in this column.

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

as as as Preparation	(Test type) 96 hr (static) 96 hr (static) 21 d (flow through)	Mortality, LC_{50} Mortality, LC_{50} Growth NOEC	(mg/L) 0.19 _{nom} 0.019 _{nom}
as as	96 hr (static) 21 d (flow	Mortality, LC ₅₀	
as as	96 hr (static) 21 d (flow	Mortality, LC ₅₀	
as as	96 hr (static) 21 d (flow	Mortality, LC ₅₀	
as	21 d (flow	-	0.019 _{nom}
		Growth NOEC	
Preparation		GIOWII NOLE	0.0032 _{nom}
	96 hr (static)	Mortality, EC ₅₀	1.1_{nom} (prep.)
			· ·
as	48 h (static)	Mortality, EC ₅₀	0.15 _{nom}
as	21 d (semi- static)	Reproduction, NOEC	0.0015 _{mm}
Preparation	48 h (static)	Mortality, EC ₅₀	1.28 _{nom} (prep.)
			· ·
as	28 d (static)	NOEC	0.0133 _{nom}
as	72 h (static) 120 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	7.7 _{mm} > 11 _{mm}
Preparation	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	2.4 _{nom} (prep.) 8.7 _{nom} (prep.)
ot required	1	1	
	as as Preparation	Preparation48 h (static)as28 d (static)as72 h (static)120 h (static)Preparation72 h (static)	Preparation48 h (static)Mortality, EC_{50} as28 d (static)NOECas72 h (static) 120 h (static)Biomass: E_bC_{50} Growth rate: E_rC_{50} Preparation72 h (static)Biomass: E_bC_{50} Growth rate: E_rC_{50}

¹ indicate whether based on nominal $(_{nom})$ or mean measured concentrations $(_{mm})$. In the case of preparations indicate whether endpoints are presented as units of preparation or as

Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2)

FOCUS Steps 1, 2 and 3

FOCUS Step 1: spring application of 100 g as/ha to spring and winter cereals and oilseed rape (overall worst case)

FOCUS Step 2: spring application of 100 g as/ha to spring and winter cereals

FOCUS Step 3: $2 \times$ spring applications at 100 g as/ha to spring cereals

Scenario	PEC global max (µg/L)	Fish acute	Fish prolonged	Invertebrates acute	Invertebrates prolonged	Algae	Sed. dweller prolonged
		I. punctatus	O. mykiss	Daphnia magna	Daphnia magna	P. subcapitata	C. riparius
		LC ₅₀ 19 μg/L	NOEC 3.2 μg/L	EC ₅₀ 150 μg/L	NOEC 1.5 μg/L	E _b C ₅₀ 7700 μg/L	NOEC 13.3 μg/L
FOCUS Step 1							
	53.121	0.4	0.1	2.8	0.0	145.0	0.3
FOCUS Step 2							
North Europe	5.355	3.5	0.6	28.0	0.3	1437.9	2.5
South Europe	9.385	2.0	0.3	16.0	0.2	820.5	1.4
FOCUS Step 3							
D1/ditch	1.45	13.1	2.2	103.4	1.0	5310.3	9.2
D1/ stream	0.981	19.4	3.3	152.9	1.5	7849.1	13.6
D3/ditch	0.555	34.2	5.8	270.3	2.7	13873.9	24.0
D4/pond	0.196	96.9	16.3	765.3	7.7	39285.7	67.9
D4/stream	0.47	40.4	6.8	319.1	3.2	16383.0	28.3
D5/pond	0.1	190.0	32.0	1500.0	15.0	77000.0	133.0
D5/stream	0.505	37.6	6.3	297.0	3.0	15247.5	26.3
R4/stream	2.952	6.4	1.1	50.8	0.5	2608.4	4.5

FOCUS Step 1: spring application of 100 g as/ha to spring and winter cereals and oilseed rape (overall worst case)

FOCUS Step 2: spring application of 100 g as/ha to spring and winter cereals FOCUS Step 3: $2 \times$ spring applications at 100 g as/ha to winter cereals

Scenario	PEC global max (µg/L)	Fish acute	Fish prolonged	Invertebrates acute	Invertebrates prolonged	Algae	Sed. dweller prolonged
		I. punctatus	O. mykiss	Daphnia magna	Daphnia magna	P. subcapitata	C. riparius
		LC ₅₀ 19 µg/L	NOEC 3.2 μg/L	EC ₅₀ 150 μg/L	NOEC 1.5 μg/L	E _b C ₅₀ 7700 μg/L	NOEC 13.3 μg/L
FOCUS Step 1							
	53.121	0.4	0.1	2.8	0.0	145.0	0.3
FOCUS Step 2							
North Europe	5.355	3.5	0.6	28.0	0.3	1437.9	2.5
South Europe	9.385	2.0	0.3	16.0	0.2	820.5	1.4
FOCUS Step 3							
D1/ditch	1.321	14.4	2.4	113.6	1.1	5828.9	10.1
D1/ stream	0.832	22.8	3.8	180.3	1.8	9254.8	16.0
D2/ditch	2.669	7.1	1.2	56.2	0.6	2885.0	5.0
D2/stream	1.67	11.4	1.9	89.8	0.9	4610.8	8.0
D3/ditch	0.555	34.2	5.8	270.3	2.7	13873.9	24.0
D4/pond	0.154	123.4	20.8	974.0	9.7	50000.0	86.4
D4/stream	0.474	40.1	6.8	316.5	3.2	16244.7	28.1
D5/pond	0.13	146.2	24.6	1153.8	11.5	59230.8	102.3
D5/stream	0.522	36.4	6.1	287.4	2.9	14751.0	25.5
D6/ditch	0.594	32.0	5.4	252.5	2.5	12963.0	22.4

Scenario	PEC global max (µg/L)	Fish acute	Fish prolonged	Invertebrates acute	Invertebrates prolonged	Algae	Sed. dweller prolonged
R1/pond	0.19	100.0	16.8	789.5	7.9	40526.3	70.0
R1/stream	2.474	7.7	1.3	60.6	0.6	3112.4	5.4
R3/stream	2.992	6.4	1.1	50.1	0.5	2573.5	4.4
R4/stream	2.957	6.4	1.1	50.7	0.5	2604.0	4.5

FOCUS Step 1: spring application of 100 g as/ha to spring and winter cereals and oilseed rape (overall worst case)

FOCUS Step 2: spring application of 100 g as/ha to spring and winter oilseed rape

FOCUS Step 3: $2 \times$ spring applications at 100 g as/ha to spring oil seed rape

Scenario	PEC global max (µg/L)	Fish acute	Fish prolonged	Invertebrates acute	Invertebrates prolonged	Algae	Sed. dweller prolonged
		I. punctatus	O. mykiss	Daphnia magna	Daphnia magna	P. subcapitata	C. riparius
		LC ₅₀ 19 µg/L	NOEC 3.2 μg/L	EC ₅₀ 150 μg/L	NOEC 1.5 μg/L	E _b C ₅₀ 7700 μg/L	NOEC 13.3 μg/L
FOCUS Step 1							
	53.121	0.4	0.1	2.8	0.0	145.0	0.3
FOCUS Step 2							
North Europe	3.852	4.9	0.8	38.9	0.4	1999.0	3.5
South Europe	5.848	3.2	0.5	25.6	0.3	1316.7	2.3
FOCUS Step 3							
D1/ditch	1.622	11.7	2.0	92.5	0.9	4747.2	8.2
D1/stream	1.107	17.2	2.9	135.5	1.4	6955.7	12.0
D3/ditch	0.555	34.2	5.8	270.3	2.7	13873.9	24.0
D4/pond	0.239	79.5	13.4	627.6	6.3	32217.6	55.6
D4/stream	0.474	40.1	6.8	316.5	3.2	16244.7	28.1
D5/pond	0.109	174.3	29.4	1376.1	13.8	70642.2	122.0
D5/stream	0.508	37.4	6.3	295.3	3.0	15157.5	26.2
R1/pond	0.199	95.5	16.1	753.8	7.5	38693.5	66.8
R1/stream	1.662	11.4	1.9	90.3	0.9	4633.0	8.0

FOCUS Step 1: spring application of 100 g as/ha to spring and winter cereals and oilseed rape (overall worst case)

FOCUS Step 2: spring application of 100 g as/ha to spring and winter oilseed rape FOCUS Step 3: $2 \times$ spring applications at 100 g as/ha to winter oil seed rape

Scenario	PEC global max (µg/L)	Fish acute	Fish prolonged	Invertebrates acute	Invertebrates prolonged	Algae	Sed. dweller prolonged
		I. punctatus	O. mykiss	Daphnia magna	Daphnia magna	P. subcapitata	C. riparius
		LC ₅₀ 19 μg/L	NOEC 3.2 μg/L	EC ₅₀ 150 μg/L	NOEC 1.5 μg/L	E _b C ₅₀ 7700 μg/L	NOEC 13.3 μg/L
FOCUS Step 1							
	53.121	0.4	0.1	2.8	0.0	145.0	0.3
FOCUS Step 2							
North Europe	3.852	4.9	0.8	38.9	0.4	1999.0	3.5
South Europe	5.848	3.2	0.5	25.6	0.3	1316.7	2.3
FOCUS Step 3							
D2/ditch	3.25	5.8	1.0	46.2	0.5	2369.2	4.1
D2/stream	2.042	9.3	1.6	73.5	0.7	3770.8	6.5
D3/ditch	0.555	34.2	5.8	270.3	2.7	13873.9	24.0
D4/pond	0.129	147.3	24.8	1162.8	11.6	59689.9	103.1
D4/stream	0.472	40.3	6.8	317.8	3.2	16313.6	28.2
D5/pond	0.101	188.1	31.7	1485.1	14.9	76237.6	131.7
D5/stream	0.52	36.5	6.2	288.5	2.9	14807.7	25.6
R1/pond	0.102	186.3	31.4	1470.6	14.7	75490.2	130.4
R1/stream	1.839	10.3	1.7	81.6	0.8	4187.1	7.2

FOCUS Step 1: spring application of 100 g as/ha to spring and winter cereals and oilseed rape (overall worst case) FOCUS Step 2: winter oilseed rape autumn application followed by spring application (relative worst case) FOCUS Step 3: autumn application followed by spring application at 2×100 g as/ha to winter oil seed rape

Scenario	PEC global max (µg/L)	Fish acute	Fish prolonged	Invertebrates acute	Invertebrates prolonged	Algae	Sed. dweller prolonged
		I. punctatus	O. mykiss	Daphnia magna	Daphnia magna	P. subcapitata	C. riparius
		LC ₅₀ 19 μg/L	NOEC 3.2 μg/L	EC ₅₀ 150 μg/L	NOEC 1.5 μg/L	E _b C ₅₀ 7700 μg/L	NOEC 13.3 μg/L
FOCUS Step 1							
	53.121	0.4	0.1	2.8	0.0	145.0	0.3
FOCUS Step 2							
North Europe	10.500	1.8	0.3	14.3	0.1	733.3	1.3
South Europe	8.656	2.2	0.4	17.3	0.2	889.6	1.5
FOCUS Step 3							
D2/ditch	4.981	3.8	0.6	30.1	0.3	1545.9	2.7
D2/stream	3.135	6.1	1.0	47.8	0.5	2456.1	4.2
D3/ditch	0.556	34.2	5.8	269.8	2.7	13848.9	23.9
D4/pond	0.831	22.9	3.9	180.5	1.8	9265.9	16.0
D4/stream	1.343	14.1	2.4	111.7	1.1	5733.4	9.9
D5/pond	0.588	32.3	5.4	255.1	2.6	13095.2	22.6
D5/stream	0.631	30.1	5.1	237.7	2.4	12202.9	21.1
R1/pond	0.068	279.4	47.1	2205.9	22.1	113235.3	195.6
R1/stream	1.949	9.7	1.6	77.0	0.8	3950.7	6.8

FOCUS	Step 4
-------	--------

2 × spring applications of carl	pendazim at 100 g as/h	a to spring cereals (rela	ated to NOEC of 1.5 ug as/L)
2 ··· spring upplications of car.	chiaazinii at 100 g as/in	a to spring coreans (rea	

	spring applications of carbendazini at 100 g as/na to spring cereals (related to NOEC of 1.5 µg as/L)										
Scenario/ water body	D1/ ditch	D1/ stream	D3/ ditch	D4/ pond	D4/ stream	D5/ pond	D5/ stream	R4/ stream			
Refinement	10 m buff	er zone (drift	reduction or	nly)							
PEC (µg/L)	1.45	0.981	0.092	0.195	0.231	0.094	0.135	2.952			
Peak caused by	D	D	S (single appl.)	D	D	S (single appl.)	S (single appl.)	R			
TER	1.0	1.5	16.3	7.7	6.5	16.0	11.1	0.5			
Refinement	10 m buff	er zone (drift	reduction +	run-off redu	iction)						
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	1.337			
Peak caused by	-/-	-/-	-/-	-/-	-/-	-/-	-/-	R			
TER	-/-	-/-	-/-	-/-	-/-	-/-	-/-	1.1			
Refinement	20 m buff	er zone (drift	reduction +	run-off redu	iction)						
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	0.699			
Peak caused by	-/-	-/-	-/-	-/-	-/-	-/-	-/-	R			
TER	-/-	-/-	-/-	-/-	-/-	-/-	-/-	2.1			

2 × spring applications at 100 g as/ha to winter cereals (drainage scenarios, related to NOEC of 1.5 μg as/L)

Scenario/ water body	D1/ ditch	D1/ stream	D2/ ditch	D2/ stream	D3/ ditch	D4/ pond	D4/ stream	D5/ pond	D5/ stream	D6/ ditch	
Refinement	10 m buffer zone (drift reduction only)										
PEC (µg/L)	1.321	0.832	2.669	1.67	0.092	0.152	0.204	0.122	0.149	0.098	
Peak caused by	D	D	D	D	S (single appl.)	D	D	S (single appl.)	S (single appl.)	S (single appl.)	
TER	1.1	1.8	0.6	0.9	16.3	9.9	7.4	12.3	10.1	15.3	
Refinement	10 m but	ffer zone (drift reduc	tion + run	-off reduc	tion)					
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	
Peak caused by	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	
TER	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	

Refinement	20 m but	20 m buffer zone (drift reduction + run-off reduction)								
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.
Peak caused by	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-
TER	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-

2 × spring applications at 100 g as/ha to winter cereals (run-off scenarios, related to NOEC of 1.5 μg as/L)

	<u> </u>		,	.0 /
Scenario/ water body	R1/ pond	R1/ stream	R3/ stream	R4/ stream
Refinement	10 m buffer zone (drift	reduction only)	<u> </u>	<u> </u>
PEC (µg/L)	0.181	2.474	2.992	2.957
Peak caused by	R	R	R	R
TER	8.3	0.6	0.5	0.5
Refinement	10 m buffer zone (drift	reduction + run-off reduc	ction)	
PEC (µg/L)	not calc.	1.125	1.366	1.34
Peak caused by	-/-	R	R	R
TER	-/-	1.3	1.1	1.1
Refinement	20 m buffer zone (drift	reduction + run-off reduc	ction)	
PEC (µg/L)	not calc.	0.59	0.717	0.701
Peak caused by	-/-	R	R	R
TER	-/-	2.5	2.1	2.1

2 × spring applications of carbendazim at 100 g as/ha to spring oil seed rape (related to NOEC of 1.5 μg as/L)

Scenario/ water body	D1/ ditch	D1/ stream	D3/ ditch	D4/ pond	D4/ stream	D5/ pond	D5/ stream	R1/ pond	R1/ stream	
Refinement	10 m buff	0 m buffer zone (drift reduction only)								
PEC (µg/L)	1.622	1.107	0.092	0.237	0.294	0.105	0.137	0.19	1.662	
Peak caused by	D	D	S (single appl.)	D	D	S (single appl.)	S (single appl.)	R	R	
TER	0.9	1.4	16.3	6.3	5.1	14.3	10.9	7.9	0.9	

Refinement	10 m buff	10 m buffer zone (drift reduction + run-off reduction)									
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	0.086	0.757		
Peak caused by	-/-	-/-	-/-	-/-	-/-	-/-	-/-	R	R		
TER	-/-	_/_	_/_	-/-	_/_	-/-	-/-	17.4	2.0		
Refinement	20 m buff	er zone (dr	ift reduction	n + run-off	reduction)						
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	0.045	0.397		
Peak caused by	-/-	-/-	-/-	-/-	-/-	-/-	-/-	R	R		
TER	-/-	-/-	-/-	-/-	-/-	-/-	-/-	33.3	3.8		

2 × spring applications of carbendazim at 100 g as/ha to winter oil seed rape (related to NOEC of 1.5 μg as/L)

Scenario/ water body	D2/ ditch	D2/ stream	D3/ ditch	D4/ pond	D4/ stream	D5/ pond	D5/ stream	R1/ pond	R1/ stream	R3/ stream
Refinement				10 m buffer	zone (drift	reduction	only)			
PEC (µg/L)	3.25	2.042	0.091	0.128	0.182	0.094	0.138	0.095	1.839	1.478
Peak caused by	D	D	S (single appl.)	D	D	S (single appl.)	S (single appl.)	R	R	R
TER	0.5	0.7	16.5	11.7	8.2	16.0	10.9	15.8	0.8	1.0
Refinement		10 m buffe	r zone (dri	ft reduction	+ run-off	reduction)				
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	0.045	0.834	0.655
Peak caused by	-/-	-/-	-/-	-/-	_/_	_/_	-/-	R	R	R
TER	-/-	-/-	_/_	-/-	_/_	-/-	_/_	33.3	1.8	2.3
Refinement	20 m bu	ffer zone (d	rift reducti	on + run-of	f reduction)	•			
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	0.436	0.34
Peak caused by	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	R	R
TER	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	3.4	4.4

Autumn application followed by spring application of carbendazim at 2 × 100 g as/ha to winter oil seed rape (related to NOEC of 1.5 µg as/L)

Tape (Telateu	1011020	<u> </u>	<u>(12)</u>						
Scenario/ water body	D2/ ditch	D2/ stream	D3/ ditch	D4/ pond	D4/ stream	D5/ pond	D5/ stream	R1/ pond	R1/ stream
Refinement	10 m buff	er zone (dr	ift reduction	n only)	_	_		_	
PEC (µg/L)	4.981	3.135	0.092	0.828	1.343	0.585	0.631	0.062	1.949
Peak caused by	D	D	S (single appl.)	D	D	D	D	R	R
TER	0.3	0.5	16.3	1.8	1.1	2.6	2.4	24.2	0.8
Refinement	10 m buff	er zone (dr	ift reduction	n + run-off	reduction)				
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	0.03	0.836
Peak caused by	-/-	-/-	-/-	-/-	-/-	-/-	-/-	R	R
TER	-/-	-/-	-/-	-/-	_/_	_/_	-/-	50.0	1.8
Refinement	20 m buff	er zone (dr	ift reduction	n + run-off	reduction)				
PEC (µg/L)	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	not calc.	0.436
Peak caused by	-/-	-/-	-/-	-/-	-/-	-/-	-/-	-/-	R
TER	-/-	_/_	-/-	-/-	_/_	_/_	-/-	-/-	3.4

Bioconcentration

	Active substance	Metabolite1	Metabolite2	Metabolite3
log K _{O/W}	1.56	-/-	_/_	_/_
Bioconcentration factor (BCF) ¹ ‡	Study not triggered	-/-	-/-	-/-
Annex VI Trigger for the bioconcentration factor	-/-	-/-	-/-	-/-
Clearance time (days) (CT ₅₀)	-/-	-/-	_/_	-/-
(CT ₉₀)	-/-	-/-	-/-	-/-
Level and nature of residues (%) in organisms after the 14 day depuration phase	-/-	-/-	-/-	-/-

only required if log $P_{O/W} > 3$. based on total ¹⁴C or on specific compounds *

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Test substance	Acute oral toxicity (LD ₅₀ µg/bee)	Acute contact toxicity (LD ₅₀ µg/bee)
as ‡	-	> 50
Preparation ¹	100	> 271
Metabolite 1	-	-
Field or semi-field tests		
not required		
for proparations indicate what	per endpoint is expressed in units of as or r	ranavation

for preparations indicate whether endpoint is expressed in units of as or preparation

Hazard quotients for honey bees (Annex IIIA, point 10.4)

Crop and application rate application rate 1 x 100 g as/ha or 1 x 850 g product/ha

Test substance	Route	Hazard quotient	Annex VI Trigger
			Inggei
as	Contact	< 2	50
as	oral	-	50
Preparation	Contact	< 3.2	50
Preparation	oral	8.5	50

Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Laboratory tests with standard sensitive species

Species	Test	Endpoint	Effect	
	Substance		$(LR_{50} g/ha^{1})$	
Typhlodromus pyri ‡	Carbendazim 500 SC	Mortality	> 30 (as)	
Aphidius rhopalosiphi ‡	Carbendazim 500 SC	Mortality	> 3000 (as)	
Typhlodromus pyri ‡	Carbendazim 125 g/L + Flusilazole 250 g/L	Mortality	> 1.6 L/ha (prep.)	
Aphidius rhopalosiphi ‡	Carbendazim 125 g/L + Flusilazole 250 g/L	Mortality	0.129 L/ha (prep.)	

for preparations indicate whether endpoint is expressed in units of as or preparation

Cereals, onseeu rape	cereals, onseed rape 2 × 100 g as/na (2 × 0.8 L/na prep.)						
Test substance	Species	Effect (LR ₅₀ g/ha)	HQ in-field	HQ off-field ¹	Trigger		
Carbendazim	Typhlodromus pyri	> 30	5.7	0.13 (1 m)	2		
Carbendazim	Aphidius rhopalosiphi	> 3000	0.06	0.001 (1 m)	2		
Carbendazim 125 g/L + Flusilazole 250 g/L	Typhlodromus pyri	0.129 L/ha	10.5	0.25 (1 m)	2		
Carbendazim 125 g/L + Flusilazole 250 g/L	Aphidius rhopalosiphi	> 1.6 L/ha	0.85	0.02 (1 m)	2		

Cereals, oilseed rane 2×100 g as/ha (2×0.8 L/ha pren.)

Sugar beet (NE) 2 × 75 g as/ha (2 × 0.6 L/ha prep.)

Test substance	Species	Effect (LR ₅₀ g/ha)	HQ in-field	HQ off-field ¹	Trigger
Carbendazim	Typhlodromus pyri	> 30	4.3	0.10 (1 m)	2
Carbendazim	Aphidius rhopalosiphi	> 3000	0.04	0.001 (1 m)	2
Carbendazim 125 g/L + Flusilazole 250 g/L	Typhlodromus pyri	0.129 L/ha	7.9	0.19 (1 m)	2
Carbendazim 125 g/L + Flusilazole 250 g/L	Aphidius rhopalosiphi	> 1.6 L/ha	0.64	0.02 (1 m)	2

Sugar beet (SE) 3 × 62.5 g as/ha (3 × 0.5 L/ha prep.)

Test substance	Species	Effect (LR ₅₀ g/ha)	HQ in-field	HQ off-field ¹	Trigger
Carbendazim	Typhlodromus pyri	> 30	4.8	0.10 (1 m)	2
Carbendazim	Aphidius rhopalosiphi	> 3000	0.05	0.001 (1 m)	2
Carbendazim 125 g/L + Flusilazole 250 g/L	Typhlodromus pyri	0.129 L/ha	8.9	0.18 (1 m)	2
Carbendazim 125 g/L + Flusilazole 250 g/L	Aphidius rhopalosiphi	> 1.6 L/ha	0.72	0.01 (1 m)	2

indicate distance assumed to calculate the drift rate

Species	Life stage	Test substance, substrate and duration	Dose (g/ha) ^{1,2}	Endpoint	% effect ³	Trigger value
Typhlodromus pyri	Protony mphs	Carbendazim 125 g/L + Flusilazole 250 g/L Bean leaves 14 d	0 - 1.6 L/ha (prep.)	Mortality Reproduction	$LR_{50} = 0.177 L/ha$ (prep.) $ER_{50} > 0.16 < 0.80 L/ha$ (prep.)	50 %
Typhlodromus pyri	Protony mphs	Carbendazim 125 g/L + Flusilazole 250 g/L Grape-vine leaves 14 d	2 × 1 L/ha (prep.) Aged- residue study	Mortality Reproduction	5 DALT: 67.7 % 28 DALT: 3.1 % 5 DALT: -/- 28 DALT: 24 %	50 %
Aphidius rhopalosiphi	Adults	Carbendazim 125 g/L + Flusilazole 250 g/L Barley seedlings 48 h	1.6 L/ha (prep.)	Mortality Reproduction	- 2 % - 20 %	50 %
Chrysoperla carnea	Larvae	Carbendazim 125 g/L + Flusilazole 250 g/L wheat seedlings until pupation	1.6 L/ha (prep.)	Mortality Reproduction	15 % 15 %	50 %
Coccinella septempunctata	Larvae	Carbendazim 125 g/L + Flusilazole 250 g/L wheat seedlings until pupation	1.6 L/ha (prep.)	Mortality Reproduction	24 % -60 %	50 %

Further laboratory and extended laboratory studies **‡**

indicate whether initial or aged residues

for preparations indicate whether dose is expressed in units of as or preparation

indicate if positive percentages relate to adverse effects or not

Field or semi-field tests

not submitted

2

3

Effects on earthworms, other soil macro-organisms and soil micro-organisms (Annex IIA, points 8.4 and 8.5, Annex IIIA, points 10.6 and 10.7)

Test substance	Time scale	Endpoint ¹
as ‡	Acute 14 days	$LC_{50} = 5.4 \text{ mg as/kg d.w.soil}$
as ‡	Chronic 8 weeks	NOEC = 1.0 mg as/kg d.w.soil
Preparation	Acute	$LC_{50} = 384.9 \text{ mg prep./kg d.w.soil}$
Preparation	Chronic	NOEC = 5.2 mg prep./kg d.w.soil = 0.61 mg as/kg d.w.soil
ns – not required	·	
as ‡	42 d	+ 27 % effect at day 28 at 4.8 mg as/kg d.w.soil (mg as/ha) + 5 % effect at day 42 at 4.8 mg as/kg d.w.soil (mg as/ha)
as ‡	28 d	as/kg d.w.soil (mg as/ha) + 5 % effect at day 28 at 4.8 mg as/kg d.w.soil
	as ‡ as ‡ Preparation Preparation as – not required as ‡	as ‡Acute 14 daysas ‡Chronic 8 weeksPreparationAcutePreparationChronicns - not required42 d

¹ indicate where endpoint has been corrected due to $\log P_{o/w} > 2.0$ (e.g. LC_{50corr}) ² litter has field arthropod studies not included at 8.3.2/10.5 above and earthropod

litter bag, field arthropod studies not included at 8.3.2/10.5 above and earthworm field studies

Toxicity/exposure ratios for soil organisms

Cereals, 2 × 100 g as/ha

Test organism	Test substance	Time scale	Soil PEC ²	TER	Trigger
Earthworms					
Eisenia fetida	as ‡	Acute	0.049 mg as/kg	110	10
Eisenia fetida	as ‡	Chronic	0.049 mg as/kg	20	5
Eisenia fetida	Preparation	Acute	0.049 mg as/kg	955	10
Eisenia fetida	Preparation	Chronic	0.049 mg as/kg	12	5

Maize, 2 × 100 g as/ha

100 g us/ nu		1			
Test organism	Test substance	Time scale	Soil PEC ²	TER	Trigger
Earthworms					
Eisenia fetida	as ‡	Acute	0.061 mg as/kg	89	10
Eisenia fetida	as ‡	Chronic	0.061 mg as/kg	16	5
Eisenia fetida	Preparation	Acute	0.061 mg as/kg	767	10
Eisenia fetida	Preparation	Chronic	0.061 mg as/kg	10	5

Sugar beet (NE), 2 × 75 g as/ha

	Í		2		
Test organism	Test substance	Time scale	Soil PEC ²	TER	Trigger
Earthworms					
Eisenia fetida	as‡	Acute	0.033 mg as/kg	164	10
Eisenia fetida	as ‡	Chronic	0.033 mg as/kg	30	5
Eisenia fetida	Preparation	Acute	0.033 mg as/kg	1418	10
Eisenia fetida	Preparation	Chronic	0.033 mg as/kg	18	5

Sugar beet (SE), 3 × 62.5 g as/ha

Test organism	Test substance	Time scale	Soil PEC ²	TER	Trigger				
Earthworms	Earthworms								
Eisenia fetida	as‡	Acute	0.035 mg as/kg	154	10				
Eisenia fetida	as ‡	Chronic	0.035 mg as/kg	29	5				
Eisenia fetida	Preparation	Acute	0.035 mg as/kg	1337	10				
Eisenia fetida	Preparation	Chronic	0.035 mg as/kg	17	5				

oilseed rape, 2 × 100 g as/ha

Test organism	Test substance	Time scale	Soil PEC ²	TER	Trigger			
Earthworms	Earthworms							
Eisenia fetida	as ‡	Acute	0.093 mg as/kg	58	10			
Eisenia fetida	as‡	Chronic	0.093 mg as/kg	11	5			
Eisenia fetida	Preparation	Acute	0.093 mg as/kg	503	10			
Eisenia fetida	Preparation	Chronic	0.093 mg as/kg	6.6	5			

to be completed where first Tier triggers are breached

indicate which PEC soil was used (e.g. plateau PEC)

Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8)

Preliminary screening data

Effects on vegetative vigour (visible response, total shoot dry weight) of 6 species tested with an application rate of 0.8 L/ha

Visible response: -0.74 to 3.21 % (onion and oat, respectively)

Shoot dry weight: -16.61 to 10.72 % of control shoot dry weight (onion and oat, respectively)

Laboratory dose response tests – not required

Additional studies (e.g. semi-field or field studies)

Not required

2

Effects on biological methods for sewage treatment (Annex IIA, point 8.7)

Test type/organism	endpoint
Activated sludge	
BOD5	Not affected by carbendazim concentrations up to 1000 mg/L nutrient solution

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	Carbendazim
water	Carbendazim
sediment	Carbendazim
groundwater	Carbendazim

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

	RMS/peer review proposal
Active substance	R 50/53
	RMS/peer review proposal
Preparation	R50/53

Appendix B – Used compound code(s)

Code/Trivial name	Chemical name	Structural formula
2-AB	2-aminobenzimidazole	H N NH ₂
АНР	3-Amino-2-hydroxyphenazine	N N OH
DAP	2,3-Diamino-phenazine	NH2 NH2 NH2
5-OH-carbendazim	5-hydroxy-benzimidazol-2-yl	HO NH-C-O-CH ₃
4-OH-carbendazim	4-hydroxy-benzimidazol-2-yl	OH H OH C-O-CH,

ABBREVIATIONS

1 /	
1/n	slope of Freundlich isotherm
3	decadic molar extinction coefficient
°C	degree Celsius (centigrade)
μg	microgram
μm	micrometer (micron)
a.s.	active substance
AChE	acetylcholinesterase
ADE	actual dermal exposure
ADI	acceptable daily intake
AF	assessment factor
AOEL	acceptable operator exposure level
AP	alkaline phosphatase
AR	applied radioactivity
ARfD	acute reference dose
AST	aspartate aminotransferase (SGOT)
AV	avoidance factor
BCF	bioconcentration factor
BUN	blood urea nitrogen
bw	body weight
CAS	Chemical Abstract Service
CFU	colony forming units
ChE	cholinesterase
CI	confidence interval
CIPAC	Collaborative International Pesticide Analytical Council Limited
CL	confidence limits
d	
u DAA	day days after emplication
	days after application
DAR	draft assessment report
DAT	days after treatment
DM	dry matter
DT ₅₀	period required for 50 percent disappearance (define method of estimation)
DT_{90}	period required for 90 percent disappearance (define method of estimation)
dw	dry weight
EbC ₅₀	effective concentration (biomass)
EC ₅₀	effective concentration
ECHA	European Chemical Agency
EEC	European Economic Community
EINECS	European Inventory of Existing Commercial Chemical Substances
ELINCS	European List of New Chemical Substances
EMDI	estimated maximum daily intake
ER_{50}	emergence rate/effective rate, median
ErC_{50}	effective concentration (growth rate)
EU	European Union
EUROPOEM	European Predictive Operator Exposure Model
f(twa)	time weighted average factor
FAO	Food and Agriculture Organisation of the United Nations
FIR	Food intake rate
FOB	functional observation battery
FOCUS	Forum for the Co-ordination of Pesticide Fate Models and their Use
g	gram
GAP	good agricultural practice
GC	gas chromatography
GCPF	Global Crop Protection Federation (formerly known as GIFAP)
	- · · · · · · · · · · · · · · · · · · ·

ССТ	annua alutanul transforma
GGT	gamma glutamyl transferase
GM	geometric mean
GS	growth stage
GSH	glutathion
h	hour(s)
ha	hectare
Hb	haemoglobin
Hct	haematocrit
hL	hectolitre
HPLC	high pressure liquid chromatography
	or high performance liquid chromatography
HPLC-MS	high pressure liquid chromatography – mass spectrometry
HQ	hazard quotient
IEDI	international estimated daily intake
IESTI	international estimated short-term intake
ISO	International Organisation for Standardisation
IUPAC	International Union of Pure and Applied Chemistry
JMPR	Joint Meeting on the FAO Panel of Experts on Pesticide Residues in Food and
	the Environment and the WHO Expert Group on Pesticide Residues (Joint
	Meeting on Pesticide Residues)
K _{doc}	organic carbon linear adsorption coefficient
kg	kilogram
K _{Foc}	Freundlich organic carbon adsorption coefficient
L	litre
LC	liquid chromatography
LC_{50}	lethal concentration, median
LC-MS	liquid chromatography-mass spectrometry
LC-MS-MS	liquid chromatography with tandem mass spectrometry
LC-UV	liquid chromatography with ultra violet detection
LD_{50}	lethal dose, median; dosis letalis media
LDH	lactate dehydrogenase
LOAEL	lowest observable adverse effect level
LOD	limit of detection
LOQ	limit of quantification (determination)
m	metre
M/L	mixing and loading
MAF	multiple application factor
MCH	mean corpuscular haemoglobin
MCHC	mean corpuscular haemoglobin concentration
MCV	mean corpuscular volume
mg	milligram
mL	millilitre
mm	millimetre
MRL	maximum residue limit or level
MS	mass spectrometry
MSDS	mass spectrometry material safety data sheet
MTD	maximum tolerated dose
MWHC	maximum volenced dose maximum water holding capacity
NESTI	national estimated short-term intake
	nanogram
ng NOAEC	no observed adverse effect concentration
NOAEL	no observed adverse effect level
NOAEL	no observed effect concentration
NOEL	no observed effect level
OM	
UM	organic matter content

De	Degeal
Pa PD	Pascal
PD PEC	proportion of different food types
	predicted environmental concentration
PECair	predicted environmental concentration in air
PEC _{gw}	predicted environmental concentration in ground water
PEC _{sed}	predicted environmental concentration in sediment
PEC _{soil}	predicted environmental concentration in soil
PEC _{sw}	predicted environmental concentration in surface water
pH	pH-value
PHED	pesticide handler's exposure data
PHI	pre-harvest interval
PIE	potential inhalation exposure
pK _a	negative logarithm (to the base 10) of the dissociation constant
Pow	partition coefficient between <i>n</i> -octanol and water
PPE	personal protective equipment
ppm	parts per million (10^{-6})
ppp	plant protection product
PT	proportion of diet obtained in the treated area
PTT	partial thromboplastin time
QSAR	quantitative structure-activity relationship
r ²	coefficient of determination
RPE	respiratory protective equipment
RUD	residue per unit dose
SE	suspo-emulsion
SD	standard deviation
SFO	single first-order
SSD	species sensitivity distribution
STMR	supervised trials median residue
t _{1/2}	half-life (define method of estimation)
TC	technical material
TER	toxicity exposure ratio
TERA	toxicity exposure ratio for acute exposure
TER _{LT}	toxicity exposure ratio following chronic exposure
TER _{ST}	toxicity exposure ratio following repeated exposure
TK	technical concentrate
TLV	threshold limit value
TMDI	theoretical maximum daily intake
TRR	total radioactive residue
TSH	thyroid stimulating hormone (thyrotropin)
TWA	time weighted average
UDS	unscheduled DNA synthesis ultraviolet
UV W/S	
W/S	water/sediment
w/v	weight per volume
W/W	weight per weight
WBC WC	white blood cell
WG	water dispersible granule World Health Organization
WHO	World Health Organisation
wk	week
yr	year