

CONCLUSION ON PESTICIDE PEER REVIEW

Conclusion on the peer review of the pesticide risk assessment of the active substance fluxapyroxad (BAS 700 F)¹

European Food Safety Authority²

European Food Safety Authority (EFSA), Parma, Italy

This conclusion, published on 4 May 2012, replaces the earlier version published on 27 January 2012³

SUMMARY

Fluxapyroxad, with the development code BAS 700 F, is a new active substance for which in accordance with Article 6(2) of Council Directive $91/414/\text{EEC}^4$ the United Kingdom received an application from BASF SE for inclusion in Annex I to Directive 91/414/EEC. Complying with Article 6 of Directive 91/414/EEC, the completeness of the dossier was evaluated and confirmed by Commission Decision of 5 November 2010 (2010/672/EU)⁵.

Following the agreement between the European Commission and the European Food Safety Authority (EFSA) for the EFSA to organise a peer review of those new active substances for which the decision on the completeness of the dossier had been published after June 2002, the designated rapporteur Member State the United Kingdom (RMS) provided its initial evaluation of the dossier on fluxapyroxad (BAS 700 F) in the Draft Assessment Report (DAR), which was received by the EFSA on 11 January 2011.

The peer review was initiated on 27 January 2011 by dispatching the DAR for consultation of the Member States and the applicant BASF SE. Following consideration of the comments received on the DAR, it was concluded that the EFSA should conduct a focused peer review in the areas of mammalian toxicology and environmental fate and behaviour, and deliver its conclusions on fluxapyroxad (BAS 700 F).

The conclusions laid down in this report were reached on the basis of the evaluation of the representative uses of fluxapyroxad (BAS 700 F) as a fungicide on wheat, durum wheat, triticale, barley, rye and oat, as proposed by the applicant. Full details of the representative uses can be found in Appendix A to this report.

No data gaps were identified in the section on identity, physical and chemical properties and analytical methods.

© European Food Safety Authority, 2012

¹ On request from the European Commission, Question No EFSA-Q-2011-00395, approved on 16 December 2011.

² Correspondence: pesticides.peerreview@efsa.europa.eu

³ The list of endpoints at Appendix A (page 63) has been amended to correct the DT_{50} soil value for the metabolite M700F002. The corrected value has not affected the overall conclusion.

⁴ OJ No L 230, 19.8.1991, p. 1. Directive as last amended by L 20, 22.1.2005, p.19 and by L309, 24.11.2009, p.1

⁵ OJ No L 290, 06.11.2010, p. 0051 - 0052

Suggested citation: European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance fluxapyroxad (BAS 700 F). EFSA Journal 2012;10(1):2522. [90 pp.] doi:10.2903/j.efsa.2012.2522. Available online: www.efsa.europa.eu/efsajournal

No data gaps or critical areas of concern were identified in the mammalian toxicology section.

A data gap was identified in the residues section for two additional residue trials on wheat covering respectively northern and southern Europe in order to derive a maximum residue limit (MRL) in wheat with extrapolation to rye and triticale.

The fate and behaviour of fluxapyroxad (BAS 700 F) in the environment was investigated with a complete set of studies, however a data gap was identified for the final report of the study on the accumulation in soil.

The risk for non-target organisms was assessed as low for the representative uses. Pending on the outcome of the data gap in the environmental fate and behaviour section, in particular, if the plateau concentration in soil observed in the field study will be greater than the estimated peak plateau predicted environmental concentrations (PECs), the risk assessment for non-target soil-organisms may need to be reconsidered. No critical areas of concern were identified.

KEY WORDS

Fluxapyroxad, BAS 700 F, peer review, risk assessment, pesticide, fungicide

TABLE OF CONTENTS

Summary	
Table of contents	3
Background	4
The active substance and the formulated product	6
Conclusions of the evaluation	6
1. Identity, physical/chemical/technical properties and methods of analysis	6
2. Mammalian toxicity	6
3. Residues	8
4. Environmental fate and behaviour	10
5. Ecotoxicology	
6. Overview of the risk assessment of compounds listed in residue definitions triggering assessm	lent
of effects data for the environmental compartments	14
6.1. Soil	14
6.2. Ground water	15
6.3. Surface water and sediment	17
6.4. Air	17
7. List of studies to be generated, still ongoing or available but not peer reviewed	18
8. Particular conditions proposed to be taken into account to manage the risk(s) identified	18
9. Concerns	18
9.1. Issues that could not be finalised	18
9.2. Critical areas of concern	18
9.3. Overview of the concerns identified for each representative use considered	19
References	20
Appendices	22
Abbreviations	87

BACKGROUND

In accordance with Article 6(2) of Council Directive $91/414/\text{EEC}^6$ the United Kingdom received an application from BASF SE for inclusion of the active substance fluxapyroxad, with the development code BAS 700 F, in Annex I to Directive 91/414/EEC. Complying with Article 6 of Directive 91/414/EEC, the completeness of the dossier was evaluated and confirmed by Commission Decision 5 November 2010 $(2010/672/\text{EU})^7$.

Following the agreement between the European Commission and the EFSA for the EFSA to organise a peer review of those new active substances for which the completeness of the dossier had been officially confirmed after June 2002, the RMS the United Kingdom provided its initial evaluation of the dossier on fluxapyroxad (BAS 700 F) in the DAR, which was received by the EFSA on 11 January 2011 (The United Kingdom, 2011a).

The peer review was initiated on 27 January 2011 by dispatching the DAR to the Member States and the applicant BASF SE for consultation and comments. In addition, the EFSA conducted a public consultation on the DAR. The comments received were collated by the EFSA and forwarded to the RMS for compilation and evaluation in the format of a Reporting Table. The comments were evaluated by the RMS in column 3 of the Reporting Table. The applicant was invited to respond to the comments in column 3 of the Reporting Table. The comments and the applicant's response were evaluated by the RMS in column 3.

The scope of the peer review and the need for additional information to be submitted by the applicant in accordance with Article 8(3) of Commission Regulation (EU) No 188/2011⁸, was considered in a telephone conference between the EFSA, the RMS, and the European Commission on 13 May 2011. On the basis of the comments received, the applicant's response to the comments and the RMS's evaluation thereof it was concluded that the EFSA should organise a consultation with Member State experts in the areas of mammalian toxicology and environmental fate and behaviour, and that further information should be requested from the applicant in the areas of physical, chemical properties, mammalian toxicology, residues, and environmental fate and behaviour.

The outcome of the telephone conference, together with EFSA's further consideration of the comments is reflected in the conclusions set out in column 4 of the Reporting Table. All points that were identified as unresolved at the end of the comment evaluation phase and which required further consideration, including those issues to be considered in consultation with Member State experts, and the additional information to be submitted by the applicant, were compiled by the EFSA in the format of an Evaluation Table.

The conclusions arising from the consideration by the EFSA, and as appropriate by the RMS, of the points identified in the Evaluation Table, together with the outcome of the expert discussions where these took place, were reported in the final column of the Evaluation Table.

A final consultation on the conclusions arising from the peer review of the risk assessment took place with Member States via a written procedure in November – December 2011.

This conclusion report summarises the outcome of the peer review of the risk assessment on the active substance and the representative formulation evaluated on the basis of the representative uses as a fungicide on wheat, durum wheat, triticale, barley, rye and oat, as proposed by the applicant. A list of the relevant end points for the active substance as well as the formulation is provided in Appendix A. In addition, a key supporting document to this conclusion is the Peer Review Report, which is a compilation of the documentation developed to evaluate and address all issues raised in the peer

⁶ OJ No L 230, 19.8.1991, p. 1. Directive as last amended by L 20, 22.1.2005, p.19 and by L309, 24.11.2009, p.1

⁷ OJ No L 290, 06.11.2010, p. 0051 - 0052

⁸ OJ No L 53, 26.02.2011, p. 51

review, from the initial commenting phase to the conclusion. The Peer Review Report (EFSA, 2011b) comprises the following documents, in which all views expressed during the course of the peer review, including minority views, can be found:

- the comments received on the DAR,
- the Reporting Table (13 May 2011),
- the Evaluation Table (9 December 2011),
- the reports of the scientific consultation with Member State experts,
- the comments received on the assessment of the additional information,
- the comments received on the draft EFSA conclusion.

Given the importance of the DAR including its addendum (compiled version of October 2011 containing all individually submitted addenda (The United Kingdom, 2011b)) and the Peer Review Report, both documents are considered respectively as background documents A and B to this conclusion.

THE ACTIVE SUBSTANCE AND THE FORMULATED PRODUCT

Fluxapyroxad, with the development code BAS 700 F, is the ISO common name for 3-(difluoromethyl)-1-methyl-*N*-(3',4',5'-trifluorobiphenyl-2-yl)pyrazole-4-carboxamide (IUPAC).

The representative formulated product for the evaluation was 'BAS 700 00F', an emulsifiable concentrate (EC), containing 62.5 g/L fluxapyroxad (BAS 700 F).

The representative uses evaluated comprise foliar spray applications as a fungicide for the control of various fungal pathogens on wheat, durum wheat, triticale, barley, rye and oat. Full details of the representative uses can be found in the list of end points in Appendix A.

CONCLUSIONS OF THE EVALUATION

1. Identity, physical/chemical/technical properties and methods of analysis

The following guidance documents were followed in the production of this conclusion: SANCO/3030/99 rev.4 (European Commission, 2000) and SANCO/825/00 rev. 7 (European Commission, 2004a).

The minimum purity of the active substance is 950 g/kg. No FAO specification exists.

The technical specification is based on pilot plant production. Toluene was considered as a relevant impurity with a maximum limit of 1 g/kg (see also section 2). The assessment of the data package revealed no issues that need to be included as critical areas of concern with respect to the identity, physical, chemical and technical properties of fluxapyroxad (BAS 700 F) or the representative formulation. The main data regarding the identity of fluxapyroxad (BAS 700 F) and its physical and chemical properties are given in Appendix A.

Adequate analytical methods are available for the determination of fluxapyroxad (BAS 700 F) in the technical material and in the representative formulation as well as for the determination of the respective impurities in the technical material.

Appropriate analytical methods are available for the post-registration monitoring of fluxapyroxad (BAS 700 F) in food and feed of plant origin with a LOQ of 0.01 mg/kg (dry, high water, high fat and high acid commodities). Residues of fluxapyroxad (BAS 700 F) in food and feed of animal origin can be monitored with a LOQ of 0.01 mg/kg, and with a LOQ of 0.001 mg/kg in milk, skimmed milk, cream and eggs. Residues of fluxapyroxad (BAS 700 F) (as well as its metabolites M700F001 and M700F002) in soil can be analysed by HPLC-MS/MS and UPLC-MS/MS with a LOQ of 0.001 mg/kg. Residues of fluxapyroxad (BAS 700 F) (as well as its metabolites M700F001, M700F002 and M700F007) in drinking water and surface water can be monitored by HPLC-MS/MS with a LOQ of 0.03 μ g/L. Fluxapyroxad (BAS 700 F) residues in air can be determined by HPLC-MS/MS or UPLC-MS/MS with a LOQ of 0.06 μ g/m³. A method for residues in body fluids and tissues is not required as the active substance is not classified as toxic or very toxic.

2. Mammalian toxicity

The following guidance documents were followed in the production of this conclusion: SANCO/221/2000 rev. 10 - final (European Commission, 2003), SANCO/222/2000 rev. 7 (European Commission, 2004b) and SANCO/10597/2003 – rev. 8.1 (European Commission, 2009).

Fluxapyroxad (BAS 700 F) was discussed at the Pesticides Peer Review Experts' Meeting 88 in September 2011.

The batches used in the toxicological studies support the technical specification as presented for the pilot plant manufacture. The relevance of the impurities has been addressed for this pilot specification, indicating that changes in the levels of impurities after storage are not significant and would not alter the toxicological profile of the substance. This indication together with the stability data over a period of 2 years gave reassurance that no toxicological concern is expected to arise from (slightly) increased levels of impurities. Toluene is considered as a relevant impurity, however there is no concern for this impurity at the level found in the pilot batches. Genotoxicity testing has been provided on some impurities and an artificial batch of fluxapyroxad (BAS 700 F) showing no concern regarding their genotoxic potential.

Low acute toxicity has been observed when fluxapyroxad (BAS 700 F) was administered by the oral, dermal or inhalation routes. Fluxapyroxad (BAS 700 F) did not produce skin or eye irritation, or potential for skin sensitisation.

The main target organs in rats were the liver and the thyroid upon short-term and long-term exposure; mice were less sensitive to the administration of fluxapyroxad (BAS 700 F) than rats, and in dogs the liver and the spleen presented iron staining. The most sensitive short-term NOAEL was found in the 90-day study in rats at 6 mg/kg bw/day, while the relevant long-term NOAEL was 2.1 mg/kg bw/day from the 2-year rat study. Mechanism studies were provided on enzyme induction, hepatocyte proliferation and thyroid hormone levels effects. Fluxapyroxad (BAS 700 F) produced liver tumours in males at 11 mg/kg bw/day and in females at 82 mg/kg bw/day, and accordingly, classification as carcinogenic category 3, R40 "limited evidence of a carcinogenic effect" was proposed according to Council Directive 67/548/EEC⁹. No genotoxic potential is attributed to the substance.

No reproductive or developmental effect was observed in rats; while minor transient developmental changes (post-implantation loss plus paw hyperflexation) were observed in rabbits in the presence of maternal toxicity. The maternal and developmental NOAEL in rabbits were 25 mg/kg bw/day; the same NOAEL of 25 mg/kg bw/day was obtained for the rat maternal toxicity based on decreased body weight gain in the first days of dosing. No evidence for a neurotoxic potential was found in a 90-day neurotoxicity study in rats.

Toxicological studies were provided on three metabolites. The groundwater metabolite M700F001, found at levels exceeding the limit of 0.1 µg/L but below 0.75 µg/L according to environmental fate and behaviour models (see section 4), was considered to be non-relevant from the toxicological point of view according to the guidance document on the assessment of groundwater metabolites (European Commission, 2003), as the studies provided sufficient evidence that this metabolite does not share the mode of action leading to carcinogenicity as observed with the parent fluxapyroxad (BAS 700 F). Metabolite M700F001 presented low oral acute and short-term toxicity, no adverse effects were observed up to 1000 mg/kg bw/day (limit dose) in a 90-day dietary study in rats; no adverse effect (regarding maternal and developmental toxicity) was observed in a developmental toxicity study in rabbits up to the highest dose tested of 250 mg/kg bw/day, but M700F001 produced high maternal toxicity at 500 mg/kg bw/day in a developmental range-finding study. No genotoxic potential is attributed to the metabolite. M700F001 was found to be clearly less toxic than the parent compound. If reference values are needed for this metabolite, no acute reference dose (ARfD) is allocated and the Acceptable Daily Intake (ADI) is 0.25 mg/kg bw/day, based on the NOAEL of 250 mg/kg bw/day from the developmental toxicity study in rabbits with an assessment factor (AF) of 1000 applied, to account for the limited database available (no long-term, multigeneration or rat developmental toxicity study available).

The groundwater and plant metabolite **M700F002**, found in groundwater above 0.75 μ g/L according to environmental fate and behaviour models (see section 4), is non-relevant from the toxicological point of view according to the guidance document on the assessment of groundwater metabolites (European Commission, 2003), as the studies provided sufficient evidence that this metabolite does

⁹ OJ 196, 16.08.1967, p. 001-0098

not share the mode of action leading to carcinogenicity as observed with the parent fluxapyroxad (BAS 700 F). Metabolite M700F002 presented low oral acute and short-term toxicity, no adverse effects were observed up to 1000 mg/kg bw/day (limit dose) in a 90-day dietary study in rats; in a developmental toxicity study in rabbits no adverse effect was observed on the development of the foetuses up to 1000 mg/kg bw/day (limit dose), while the maternal NOAEL was 300 mg/kg bw/day based on reduction of maternal body weight gain and decreased food intake. No genotoxic potential is attributed to metabolite M700F002. M700F002 can be considered to be less toxic than the parent compound. If reference values are needed for this metabolite, no ARfD is allocated and the ADI is 0.3 mg/kg bw/day, based on the NOAEL of 300 mg/kg bw/day from the developmental toxicity study in rabbits with an AF of 1000 applied to account for the limited database available (no long-term, multigeneration or rat developmental toxicity study available).

Toxicological studies were presented for the plant metabolite **M700F048**; it was shown that it is a precursor of metabolite **M700F008** when administered orally to rats; therefore the outcome of the studies presented for M700F048 could be applied to both metabolites. Metabolite M700F048 presented low acute oral toxicity; in a 28-day dietary study in rats a NOAEL of 200 mg/kg bw/day was identified based on reduced body weight gain and liver toxicity observed at 1000 mg/kg bw/day. It was shown to be a potential clastogen *in vitro*, but two *in vivo* tests (micronucleus and Unscheduled DNA Synthesis (UDS) assay) were negative. In a developmental toxicity study in rabbits both the maternal and developmental NOAELs were 30 mg/kg bw/day based on reduced maternal body weight gain, decreased food intake, and increased incidence of late resorptions and abortions at 100 mg/kg bw/day. It was concluded that the liver effects were observed at higher doses for the metabolite than for the parent fluxapyroxad (BAS 700 F) but the developmental toxicity was comparable between these compounds, therefore, if reference values are needed, the reference values of fluxapyroxad (BAS 700 F) are applicable to these two metabolites as they can be considered to be of similar toxicity as the parent compound.

The ADI for fluxapyroxad (BAS 700 F) is 0.02 mg/kg bw/day, based on the NOAEL of 2.1 mg/kg bw/day from the 2-year rat study and applying the standard AF of 100. The Acceptable Operator Exposure Level (AOEL) is 0.04 mg/kg bw/day, based on the NOAEL of 6 mg/kg bw/day from the 90-day rat study with an AF of 100 applied and a correction for low oral absorption of 68 %. The ARfD is 0.25 mg/kg bw, based on the NOAEL of 25 mg/kg bw/day for developmental effects in rabbits and decreased maternal body weight gain in rats with an AF of 100 applied.

The estimated operator exposure level is below the AOEL without considering the use of personal protective equipment (PPE) according to the German model, or when PPE (gloves during mixing, loading and application) are worn according to the UK POEM. The estimated bystander and worker exposures are below the AOEL.

3. Residues

The assessment in the residue section below is based on the guidance documents listed in the document 1607/VI/97 rev. 2 (European Commission, 1999), and the JMPR recommendations on livestock dietary burden calculations stated in the 2004 and 2007 JMPR reports (JMPR, 2004 and 2007).

The metabolism of fluxapyroxad (BAS 700 F) was investigated in tomatoes (fruit crops), soyabean (pulses and oilseed crops) and in wheat (cereals) under greenhouse conditions after foliar spray applications using the ¹⁴C labelling on the aniline and the pyrazole moieties, respectively. Fluxapyroxad (BAS 700 F) was identified as the major component of the radioactive residues in the tomato and cereal plant parts investigated, accounting for 54 % TRR up to more than 90 % TRR and residue concentrations of 0.03 mg/kg in wheat grains and up to 0.16 mg/kg in tomato fruits. The metabolism was more extensive in soyabean seeds where fluxapyroxad (BAS 700 F) accounted for only 7 % TRR up to 21 % TRR, and the major metabolites were identified as M700F002 (33.5 %

TRR, pyrazole labelling) and M700F048 (20 % TRR, aniline labelling). Minor metabolites were identified at very low levels, accounting for less than 2 % of the TRR. Based on these studies, the main routes of biotransformation of fluxapyroxad (BAS 700 F) in plants were proposed to consist of N-demethylation of the pyrazole moiety, and hydroxylation of the biphenyl moiety with further glycosidation of the molecule. A minor pathway consisted of the loss of a fluorine atom at the biphenyl ring. No cleavage of the molecule was foreseen and the presence in soyabean seeds of the metabolite M700F002 resulting from the cleavage of the carboxamide bond was assumed to result from its uptake from the soil, where M700F002 was identified as a major soil metabolite. This statement is supported by the fact that the corresponding biphenyl counterpart metabolites were not detected in the primary crops when the labelling on the aniline moiety was used, and also by the higher total radioactive residues measured in soyabean seeds in the ¹⁴C-pyrazole study compared to the ¹⁴C-aniline study (0.26 mg/kg *vs.* 0.12 mg/kg).

Fluxapyroxad (BAS 700 F) was considered as a valid marker of the total residues in plants, and the residue definition for monitoring was limited to the parent compound only. For risk assessment, the inclusion of the metabolites M700F002 and M700F048 was considered during the peer review. Since metabolite M700F002 was concluded by the Pesticides Peer Review Experts' Meeting 88 to be less toxic than the parent compound (see section 2), EFSA proposes not to include this metabolite in the residue definition for risk assessment. Metabolite M700F048 was shown to be of similar toxicity as the parent compound, and as it was recovered at comparable levels in soyabean seeds, it was initially suggested to include this metabolite in the residue definition. However, in the framework of a MRL application (EFSA, 2011a), metabolite M700F048 was shown not to be present in supervised residue trials conducted in the USA and Canada in support of an import tolerance request on soyabean crop. Therefore, having regard to the results of the North American residue trials, EFSA is of the opinion not to include metabolite M700F048 and to limit the residue definition for risk assessment to fluxapyroxad (BAS 700 F) only for all categories of crops.

Only 6 residue trials were submitted on wheat covering respectively northern and southern Europe, and were found to be acceptable. A data gap was identified to provide two additional residue trials on wheat covering respectively northern and southern Europe in order to derive a MRL on wheat with extrapolation to rye and triticale. The residue database on barley was complete to derive a MRL of 0.6 mg/kg with extrapolation to oat. Fluxapyroxad (BAS 700 F) was also shown to remain stable under standard hydrolytic conditions representative of pasteurisation, baking, boiling, brewing and sterilisation. Residue trials on wheat and barley were provided to address the magnitude of the residues in processed commodities (bran, flour, germ, bread and beer). A concentration of fluxapyroxad (BAS 700 F) residues was observed in cereal bran and germ only, with average processing factors of 3 and 1.4, respectively.

In a confined rotational crop study, the soil was treated once at a dose rate of 250 g a.s./ha (1N) with ¹⁴C-fluxapyroxad labelled either on the pyrazole or the aniline moiety. Spinach, radish and spring wheat were planted at plant back intervals of 30, 149 and 365 days. A similar residue pattern as in the primary crops was observed in the edible parts of the rotated crops. The available rotational field trials carried out on wheat, carrot root, cauliflower, broccoli and lettuce at a dose rate of 250 g a.s./ha were considered acceptable and showed that no significant residue levels of metabolites M700F002, M700F008 and M700F048 were recovered in the edible parts of the rotated crops at all plant back intervals (< 0.01 - 0.02 mg/kg). In contrast, significant levels of fluxapyroxad (BAS 700 F) residues were quantified in carrot roots (0.08 mg/kg) and in immature lettuce and cauliflower leaves (0.03 and 0.06 mg/kg, respectively). Therefore EFSA proposes a default MRL of 0.1 mg/kg respectively for the root and tuber vegetables crop group (including sugar beet and potatoes), and for the crop group "*leaves and sprouts of brassica spp*".

Frozen storage stability studies showed acceptable stability of the residues of the parent compound (737 days) as well as its metabolites M700F002 (824 days) and M700F048 (733 days) in all commodities, and covered the storage period of the residue samples in the field residue trials. The

desmethyl metabolite M700F008 was shown to be stable for up to 725 days in wheat grain (high starch content) and straw, but only for 133 days in high water and high oil content matrices.

Metabolism studies on lactating goats and laying hens were provided showing that besides the parent compound, the desmethyl metabolite M700F008 was found to be a significant compound of the total residues in all the ruminant and poultry matrices (17 % to 83 % TRR). Further minor metabolites were detected at a trace level (< 0.01 mg/kg) and resulted from the hydroxylation of the biphenyl moiety with a further step of conjugation reactions with glucuronic acid, amino acids or sulfate. An additional metabolism study on poultry using the ¹⁴C-labelled M700F002 was provided and evaluated in Addendum 2 to the DAR (The United Kingdom, 2011b). Unchanged M700F002 was the major component of the total residues identified in all matrices (30 % to 90 % TRR). The agreed residue definition for monitoring in animal matrices is the parent compound only, whereas for risk assessment it is proposed to include both the parent compound and the desmethyl metabolite M700F008 expressed as parent equivalent. Feeding studies were also provided analysing fluxapyroxad (BAS 700 F), and metabolites M700F008 and M700F002 in ruminant and poultry matrices. MRLs were proposed at the LOQ for all the matrices except for ruminant fat (0.02 mg/kg) and eggs (0.01 mg/kg).

No chronic or acute intake concerns were identified for consumers. Using the EFSA PRIMo model, the TMDI is 15.5 % of the ADI (UK toddler) and the highest IESTI accounted for 4.9 % of the ARfD (potatoes, UK infant). It is also noted that the metabolite M700F002 is estimated to leach to groundwater at significant levels. The 0.75 μ g/L trigger was exceeded in the majority of the pertinent FOCUS scenarios with a maximum concentration of 5.03 μ g/L estimated for winter cereals in the FOCUS Jokioinen scenario (see section 4). Therefore an additional exposure of the consumers can be expected when groundwater is used as drinking water, although this route of exposure did not contribute significantly to the overall consumer exposure assessment (<1 % of the ADI allocated to metabolite M700F002).

4. Environmental fate and behaviour

The route and rate of degradation of fluxapyroxad (BAS 700 F) was investigated in four soils with pyrazole labelled fluxapyroxad (BAS 700 F), and in one soil with aniline and one with trifluorophenyl labelled fluxapyroxad (BAS 700 F). Fluxapyroxad (BAS 700 F) exhibits medium to very high persistence in these studies. No metabolites were identified above a concentration of 5 % AR in the aniline and trifluorophenyl labelled studies. Two metabolites, **M700F001** and **M700F002**, were observed in the pyrazole labelled study above 10 % AR. The levels of metabolite M700F002 were still increasing at the end of the study (120 d). Unextracted residues at the end of the studies (120 d) amounted to 54.7 % AR in the aniline labelled test, 29.9 % AR in the trifluorophenyl labelled test and up to 25.9 % AR in the pyrazole labelled ones. Mineralization (as CO₂) was 12.7 % AR in the aniline labelled experiment, 6 % in the trifluorophenyl labelled test and from negligible up to 7.3 % AR in the pyrazole labelled ones (end of studies, 120 d).

The rate of degradation of the metabolites M700F001 and M700F002 was also investigated in separate studies. Metabolite M700F001 may be considered to exhibit low persistence in soil, while metabolite M700F002 may be considered to exhibit high persistence in soil under aerobic conditions in laboratory experiments.

The cleavage of the carboxamide bond leading to the metabolites identified would be expected to concomitantly produce metabolite **M700F003** (from the aniline moiety side of the molecule). However, in the experiment performed with the substance labelled at the aniline moiety the metabolite M700F003 was not detected. The applicant considered that the metabolite M700F003 rapidly forms bound residues. An aerobic soil degradation study was submitted as supportive information for metabolite M700F003. In this study the majority of the radioactivity remained unextracted (78.3 % AR) at the study termination (30 d). During the peer review further information has been provided on the adequacy of the extraction methods employed in the soil studies to show that this potential

metabolite was appropriately extracted and quantified, and on its impact on the soil risk assessment. This information has been summarized and evaluated by the RMS in an addendum of September 2011 (The United Kingdom, 2011b). No further information on the eventual formation and fate of this metabolite is deemed necessary to finalise the EU risk assessment.

The applicant submitted a study to investigate the degradation of fluxapyroxad (BAS 700 F) in soil under anaerobic conditions with the substance labelled only in the aniline and pyrazole rings. A further study with triflurophenyl-U- 14 C labelled fluxapyroxad (BAS 700 F) would be needed to complete the data requirements for the route and rate of degradation under anaerobic conditions. However, no further data have been requested at EU level since anaerobic conditions are considered to be unlikely to occur for the representative uses evaluated.

Photolysis in soil was investigated in an experiment under simulated summer sunlight at 49°N (Xenon lamp, filtered for $\lambda < 290$ nm) for 15 days of continuous irradiation. Photolysis slightly enhances the degradation of fluxapyroxad (BAS 700 F) in soil, producing minor metabolites not found in the dark control. However, these metabolites appeared at levels < 5 % AR and are not considered to require further assessment.

The dissipation of fluxapyroxad (BAS 700 F) under field conditions was investigated in six locations in Europe. In these trials the samples have also been analysed for the soil metabolites M700F001, M700F002 and the potential metabolite M700F003. The very high persistence of fluxapyroxad (BAS 700 F) observed in the laboratory studies was confirmed by these trials. Additionally, four field trials (Denmark, Germany, Italy and Southern France), where metabolite M700F002 was applied as parent, were performed. A soil accumulation study is currently ongoing, which, at the time of the peer review, had not yet reached a plateau. A data gap was identified for the final study when available. Accumulated PEC soil were calculated by the RMS for fluxapyroxad (BAS 700 F) and its metabolites M700F001 and M700F002 based on worst-case field half-life for fluxapyroxad (BAS 700 F). Plateau is expected to be reached after 13 years.

The mobility of fluxapyroxad (BAS 700 F) and its metabolites M700F001 and M700F002 was assessed by batch adsorption/desorption studies in eight soils. According to the results of these studies, fluxapyroxad (BAS 700 F) may be considered low to medium mobile in soil, while metabolites M700F001 and M700F002 high to very high mobile.

Fluxapyroxad (BAS 700 F) was estimated to be stable to hydrolysis in buffer aqueous solutions (25°C, pH 4, 5, 7 and 9; from measurements performed at 50°C). Fluxapyroxad (BAS 700 F) was stable to aqueous photolysis. The water sediment metabolite M700F007 under irradiated conditions is also stable to hydrolysis (25°C, pH 4, 5, 7 and 9) and aqueous photolysis. Fluxapyroxad (BAS 700 F) is not readily biodegradable according to the available study (OECD 301B). The degradation of fluxapyroxad (BAS 700 F) was investigated under dark and irradiated water/sediment systems. In dark systems the primary dissipation from the water phase occurs by partition to the sediment phase. Only minor degradation occurred in the whole water/sediment system experiments under dark conditions. No metabolites > 5 % AR were observed. A default DT₅₀ whole system = 1000 d has been assumed for the environmental risk assessment. Enhanced degradation was observed in the irradiated systems, resulting in the formation of two metabolites M700F001 (10.9 % AR at day 43) and M700F007 (7.5 % AR at day 57, increasing at the end of the study). The fact that fluxapyroxad (BAS 700 F) has shown to be practically stable in the aqueous photolysis study suggests that the acetone used as a vehicle to apply the product or other substances in the system may have acted as photosensitisers inducing indirect photolysis of fluxapyroxad (BAS 700 F). Also the fact that the temperature was higher in the irradiated systems may have contributed to the apparent enhanced degradation. Since the degradation was only marginally increased with respect to the dark experiments, the results of the irradiated systems have not been considered further in the environmental risk assessment.

The applicant proposed to refine the PEC_{SW} calculations by deviating from the default wash-off coefficient of 0.5 cm⁻¹, using the solubility correlation formula proposed in FOCUS SW guidance

(FOCUS 2001). Member State experts discussed the applicability of this formula to the case of fluxapyroxad (BAS 700 F). The experts noted that due to the low solubility of fluxapyroxad (BAS 700 F) the application of the formula to this substance was done outside of the range of solubility for which it had been validated. Additionally, it was also noted that the formulation (or a number of their components) may remain in the surface of the leaves for the time needed to have a rainfall event. In the particular case of the representative formulation (an emulsifiable concentrate) a number of components may significantly modify the effective solubility and wash-off potential of fluxapyroxad (BAS 700 F). Therefore, the experts concluded that for this low solubility compound and its formulation some experimental data would be needed on the wash-off from leaves allowing to move away from the default value for wash-off. Therefore calculations assuming this refinement were disregarded with respect to the EU risk assessment.

The potential for groundwater contamination was assessed by calculation of the 20 years 80th percentile concentration at 1 m depth for fluxapyroxad (BAS 700 F) and its metabolites M700F001 and M700F002 with the FOCUS GW I scheme (FOCUS, 2000; EFSA, 2004; EFSA, 2007)¹⁰. Leaching resulting from the representative uses in cereals (winter and spring) was simulated with FOCUS models PEARL 3.3.3, MACRO 4.4.2 (Châteaudun), and PELMO 3.3.2 for the available scenarios following the representative GAP. Appropriate combinations of input parameters were selected to cover the realistic worst case of the parent compound or the metabolites respectively. According to these calculations fluxapyroxad (BAS 700 F) does not exceed the limit of 0.1 µg/L for any of the scenarios simulated, metabolite M700F001 exceeds the limit of 0.1 µg/L in less than half of the scenarios with a maximum of 5.03 µg/L for winter cereals in Jokioinen scenario (PELMO simulation).

5. Ecotoxicology

The risk assessment was based on the following documents: European Commission (2002a, 2002b and 2002c), SETAC (2001) and EFSA (2009).

The risk for **birds** via dietary exposure was assessed as low at tier 1 for the representative uses on cereals, based on the SANCO guidance (European Commission, 2002c). The risk assessment for **mammals** was carried out in accordance with the EFSA guidance (EFSA, 2009). The acute risk for mammals was assessed as low at the screening assessment for the representative uses on cereals. The reproductive risk for mammals was assessed as low at the tier 1 risk assessment, based on generic focal species. Since the log P_{ow} for fluxapyroxad (BAS 700 F) is 3.1, a risk assessment from secondary poisoning to birds and mammals was carried out. The risk for birds and mammals from secondary poisoning was assessed as low based on the use of the SANCO guidance (European Commission, 2002c).

Based on the toxicity data available fluxapyroxad (BAS 700 F) should be considered as very toxic to **aquatic organisms**. A similar toxicity was observed for the active substance and the representative formulation 'BAS 700 00F'. The risk from fluxapyroxad (BAS 700 F) for sediment-dwelling organisms (*Chironomus riparius*) and aquatic plants (*Lemna gibba*) was assessed as low at FOCUS_{sw} step 1, as well as the chronic risk to aquatic invertebrates. The acute and chronic risk for aquatic invertebrates and algae, respectively, was assessed as low for the representative uses on cereals at FOCUS_{sw} step 2. A low acute and chronic risk for fish was observed in seven out of nine relevant scenarios (D3, D4, D5, D6, R1, R3 and R4) at FOCUS_{sw} step 3. A low acute and chronic risk for fish was observed for the scenarios D1 and D2 based on the use of PEC_{sw} step 3 with refined interception values according to FOCUS_{sw} recommendations. Overall, it can be concluded that the risk from fluxapyroxad (BAS 700 F) to aquatic organisms was assessed as low. A BCF-value of 36 obtained for

¹⁰ A Q10 of 2.58 (EFSA, 2007) and Walker equation coefficient of 0.7 was used in these simulations and for the normalization of the degradation input parameters used in the modelling.

whole fish indicates no potential for bioaccumulation. The risk from the metabolites (M700F001, M700F002 and M700F007) for aquatic organisms was assessed as low for the representative uses.

The oral and contact hazard quotients (HQs) for **bees** were below the Annex VI trigger, indicating a low risk to bees for the representative uses on cereals. Since mortality and behavioural abnormalities (such as apathy, moving coordination problems) were seen in the acute contact toxicity test with the formulation on bees, a higher tier test (tunnel study) was submitted. The results showed that the formulation did not cause effects on mortality, larvae or pupae, or foraging activity of honeybees. There was an initial decrease in colony strength compared to the control, however the effect was considered minor and not sustained. The test item groups recovered to come in line with the colony growth rate of the controls. The risk to honeybee brood development from the exposure of the formulation 'BAS 700 00 F' was assessed as low.

Whilst the off-field risk for the two standard test species *Aphidius rhopalosiphi* and *Typhlodromus pyri* was assessed as low, the in-field risk was assessed as low only for *A. rhopalosiphi* for the representative uses on cereals. The in-field risk for *T. pyri* was addressed based on aged-residue studies on *T. pyri*.

The active substance and its soil metabolite M700F002 are considered persistent in soil, while the soil metabolite M700F001 showed low persistence (see sections 4 and 6). The TERs values were calculated on the basis of the peak plateau PEC_{soil}, and initial PEC_{soil} for the active substance, metabolite M700F002 and metabolite M700F001. The acute and chronic risk from fluxapyroxad (BAS 700 F) and the soil metabolites M700F001 and M700F002 to earthworms and soil non-target macro-organisms was assessed as low for the representative uses on cereals. An earthworm field study and a litter bag study were submitted. No statistically significant effects from the exposure of the active substance to non-target soil-organisms were observed in these studies, confirming the outcome of the first-tier risk assessment. It is noted that there is a soil accumulation field study ongoing in the area of environmental fate and behaviour (see data gap in section 4). Pending on the outcome of this issue, in particular, if the plateau Concentration in soil observed in the field study will be greater than the estimated peak plateau PECs, the risk assessment for **non-target soil-organisms** may need to be reconsidered.

The risk for **non-target terrestrial plants** and the organisms involved in **biological methods of sewage treatment plants** was assessed as low for the representative uses.

6. Overview of the risk assessment of compounds listed in residue definitions triggering assessment of effects data for the environmental compartments

6.1. Soil

Compound (name and/or code)	Persistence	Ecotoxicology
		The acute and chronic risk from the exposure of fluxapyroxad (BAS 700 F) to soil-organisms was assessed as low.
Fluxapyroxad (BAS 700 F)	Medium to very high ($DT_{50\ 20\ C} = 89.3\ d - 696\ d$)	Pending on the data gap in section 4, the risk assessment for non-target soil-organisms may need to be reconsidered.
M700F001	Low (DT _{50 20 °C} = 2.3 d– 10 d)	The acute and chronic risk from the exposure of metabolite M700F001 to soil-organisms was assessed as low. Pending on the data gap in section 4, the risk assessment for non-target soil-organisms may need to be reconsidered.
M700F002	High (DT _{50 20 °C} = 131 d -197d)	The acute and chronic risk from the exposure of metabolite M700F002 to soil-organisms so was assessed as low. Pending on the data gap in section 4, the risk assessment for non-target soil-organisms may need to be reconsidered.

6.2. Ground water

Compound (name and/or code)	Mobility in soil	>0.1 µg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)	Pesticidal activity	Toxicological relevance	Ecotoxicological activity
Fluxapyroxad (BAS 700 F)	low to medium mobile (K _{Foc} = 320 – 1101 mL/g)	FOCUS: No	Yes	Yes	Very toxic to aquatic organisms, end point driving the aquatic risk assessment: acute fish $LC_{50} = 0.29$ mg a.s./L (regulatory concentration including a safety factor of 100 = 0.0029 mg a.s./L). The risk assessment for the aquatic environment was assessed as low.
M700F001	high to very high (K _{Foc} = 0 – 65.8 mL/g)	FOCUS: Yes, 0.1 µg/L exceeded for a number of scenarios and uses	No	No Rat oral LD ₅₀ > 2000 mg/kg bw Not genotoxic 90-day rat NOAEL 1000 mg/kg bw/day Rabbit developmental and maternal NOAELs 250 mg/kg bw/day ADI: 0.25 mg/kg bw/day No ARfD allocated	Harmful to aquatic organisms, end point driving the aquatic risk assessment: algae $E_yC_{50} =$ 26.42 mg/L (regulatory concentration including a safety factor of 10 = 2.642 mg/L). A low risk to the aquatic environment was indicated in the surface water risk assessment.

Compound (name and/or code)	Mobility in soil	>0.1 µg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)	Pesticidal activity	Toxicological relevance	Ecotoxicological activity
M700F002	high to very high (K _{Foc} = 1 – 99.9 mL/g)	FOCUS: Yes, 0.75 μg/L exceeded for the majority of scenarios and uses. Max. 5.03 μg/L for winter cereals in Jokioinen.	No	No Rat oral LD ₅₀ > 2000 mg/kg bw Not genotoxic 90-day rat NOAEL 1000 mg/kg bw/day Rabbit maternal NOAEL 300 mg/kg bw/day Rabbit developmental NOAEL 1000 mg/kg bw/day ADI: 0.3 mg/kg bw/day No ARfD allocated	Harmful to aquatic organisms, end point driving the aquatic risk assessment: algae $E_yC_{50} =$ 22.44 mg/L (regulatory concentration including a safety factor of $10 = 2.244$ mg/L). A low risk to the aquatic environment was indicated in the surface water risk assessment.

6.3. Surface water and sediment

Compound (name and/or code)	Ecotoxicology
Fluxapyroxad (BAS 700 F)	Very toxic to aquatic organisms, end point driving the aquatic risk assessment: acute fish $LC_{50} = 0.29$ mg a.s./L (regulatory concentration including a safety factor of $100 = 0.0029$ mg a.s./L).
	The risk to the aquatic environment was assessed as low in the surface water risk assessment. Harmful to aquatic organisms, end point driving the aquatic risk assessment: algae $E_yC_{50} = 26.42$ mg/L (regulatory
M700F001 (soil metabolite)	concentration including a safety factor of $10 = 2.642 \text{ mg/L}$). A low risk to the aquatic environment was indicated in the surface water risk assessment.
M700F002 (soil metabolite)	Harmful to aquatic organisms, end point driving the aquatic risk assessment: algae $E_yC_{50} = 22.44$ mg/L (regulatory concentration including a safety factor of $10 = 2.244$ mg/L).
	A low risk to the aquatic environment was indicated in the surface water risk assessment.
M700F007 (aqueous metabolite in water / sediment	The LC ₅₀ > 100 mg /L, classification is not required, end point driving the aquatic risk assessment: acute fish or <i>Daphnia Magna</i> $E_yC_{50} = 100$ mg /L (regulatory concentration including a safety factor of 100 = 1.00 mg/L).
systems under irradiated conditions).	A low risk to the aquatic environment was indicated in the surface water risk assessment.

6.4. Air

Compound (name and/or code)	Toxicology
Fluxapyroxad (BAS 700 F)	Rat LC_{50} inhalation > 5.31 mg/L air (4h., nose only); no classification proposed.

7. List of studies to be generated, still ongoing or available but not peer reviewed

This is a complete list of the data gaps identified during the peer review process, including those areas where a study may have been made available during the peer review process but not considered for procedural reasons (without prejudice to the provisions of Article 7 of Directive 91/414/EEC concerning information on potentially harmful effects).

- 2 additional residue trials are required on wheat covering respectively northern and southern Europe in order to derive a MRL on wheat with extrapolation to rye and triticale (relevant for the representative uses on wheat, rye and triticale evaluated; no submission date proposed by the applicant; see section 3)
- Final report of the accumulation in soil field study once the plateau is reached should be submitted as soon as it becomes available (see section 4.2.8 in Level 4 of Vol. 1 of the DAR). If the plateau concentration in soil observed in the field study will be greater than the estimated peak plateau PECs, the risk assessment for non-target soil-organisms may need to be reconsidered (relevant for all representative uses evaluated; submission date proposed by the applicant: as soon as available; see sections 4 and 5)

8. Particular conditions proposed to be taken into account to manage the risk(s) identified

• None

9. Concerns

9.1. Issues that could not be finalised

An issue is listed as an issue that could not be finalised where there is not enough information available to perform an assessment, even at the lowest tier level, for the representative uses in line with the Uniform Principles of Annex VI to Directive 91/414/EEC and where the issue is of such importance that it could, when finalised, become a concern (which would also be listed as a critical area of concern if it is of relevance to all representative uses).

None.

9.2. Critical areas of concern

An issue is listed as a critical area of concern where there is enough information available to perform an assessment for the representative uses in line with the Uniform Principles of Annex VI to Directive 91/414/EEC, and where this assessment does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

An issue is also listed as a critical area of concern where the assessment at a higher tier level could not be finalised due to a lack of information, and where the assessment performed at the lower tier level does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

None.

9.3. Overview of the concerns identified for each representative use considered

(If a particular condition proposed to be taken into account to manage an identified risk, as listed in section 8, has been evaluated as being effective, then 'risk identified' is not indicated in this table.)

Representative use		Foliar spray applications as a fungicide for the control of various fungal pathogens on wheat, durum wheat, triticale, barley, rye and oat (application rate of 2 x 0.125 kg a.s./ha)
	Risk identified	
Operator risk	Assessment not finalised	
	Risk identified	
Worker risk	Assessment not finalised	
	Risk identified	
Bystander risk	Assessment not finalised	
	Risk identified	
Consumer risk	Assessment not finalised	
Risk to wild non	Risk identified	
target terrestrial Assessment not		
vertebrates	finalised	
Risk to wild non	Risk identified	
target terrestrial organisms other than vertebrates	Assessment not finalised	
Risk to aquatic	Risk identified	
organisms	Assessment not finalised	
Groundwater exposure active	Legal parametric value breached	
substance	Assessment not finalised	
Groundwater	Legal parametric value breached	
Groundwater exposure metabolites	Parametric value of $10\mu g/L^{(a)}$ breached	
metabontes	Assessment not finalised	
Comments/Remarks	8	

The superscript numbers in this table relate to the numbered points indicated within sections 9.1 and 9.2. Where there is no superscript number, see sections 2 to 6 for further information.

(a): Value for non relevant metabolites prescribed in SANCO/221/2000-rev 10-final, European Commission, 2003

REFERENCES

- ACD/ChemSketch, Advanced Chemistry Development, Inc., ACD/Labs Release: 12.00 Product version: 12.00 (Build 29305, 25 Nov 2008).
- EFSA (European Food Safety Authority), 2004. Opinion of the Scientific Panel on Plant Health, Plant Protection Products and their Residues on a request of EFSA related to FOCUS groundwater models comparability and the consistency of this risk assessment of groundwater contamination. The EFSA Journal (2004) 93, 1-20.
- EFSA (European Food Safety Authority), 2007. Scientific Opinion of the Panel on Plant Protection Products and their Residues on a request from EFSA related to the default *Q*10 value used to describe the temperature effect on transformation rates of pesticides in soil. The EFSA Journal (2007) 622, 1-32.
- EFSA (European Food Safety Authority), 2009. Guidance Document on Risk Assessment for Birds and Mammals on request of EFSA. EFSA Journal 2009; 7(12):1438.
- EFSA (European Food Safety Authority), 2011a. Reasoned opinion on setting new MRLs for fluxapyroxad (BAS 700F) in various commodities of plant and animal origin prepared by EFSA Pesticide Risk Assessment Peer Review (PRAPeR) Unit EFSA Journal 2011; 9(6):2196 1-68 pp.
- EFSA (European Food Safety Authority), 2011b. Peer Review Report to the conclusion regarding the peer review of the pesticide risk assessment of the active substance fluxapyroxad (BAS 700 F).
- European Commission, 1999. Guidelines for the generation of data concerning residues as provided in Annex II part A, section 6 and Annex III, part A, section 8 of Directive 91/414/EEC concerning the placing of plant protection products on the market, 1607/VI/97 rev.2, 10 June 1999.
- European Commission, 2000. Technical Material and Preparations: Guidance for generating and reporting methods of analysis in support of pre- and post-registration data requirements for Annex II (part A, Section 4) and Annex III (part A, Section 5) of Directive 91/414. SANCO/3030/99 rev.4, 11 July 2000.
- European Commission, 2002a. Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC. SANCO/10329/2002 rev.2 final, 17 October 2002.
- European Commission, 2002b. Guidance Document on Aquatic Ecotoxicology Under Council Directive 91/414/EEC. SANCO/3268/2001 rev 4 (final), 17 October 2002.
- European Commission, 2002c. Guidance Document on Risk Assessment for Birds and Mammals Under Council Directive 91/414/EEC. SANCO/4145/2000.
- European Commission, 2003. Guidance Document on Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated under Council Directive 91/414/EEC. SANCO/221/2000-rev. 10 final, 25 February 2003.
- European Commission, 2004a. Guidance document on residue analytical methods. SANCO/825/00 rev. 7, 17 March 2004.
- European Commission, 2004b. Guidance Document on Dermal Absorption. SANCO/222/2000 rev. 7, 19 March 2004.
- European Commission, 2009. Guidance Document on the Assessment of the Equivalence of Technical Materials of Substances Regulated under Council Directive 91/414/EEC. SANCO/10597/2003 rev. 8.1, May 2009.
- FOCUS, 2000. "FOCUS Groundwater Scenarios in the EU review of active substances". Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference SANCO/321/2000-rev.2. 202 pp, as updated by the Generic Guidance for FOCUS groundwater scenarios, version 1.1 dated April 2002.

- FOCUS, 2001. "FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC". Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2. 245 pp.
- FOCUS, 2006. "Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration" Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp.
- JMPR, 2004. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Rome, Italy, 20–29 September 2004, Report 2004, 383 pp.
- JMPR, 2007. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues Geneva, Switzerland, 18–27 September 2007, Report 2007, 164 pp.
- SETAC (Society of Environmental Toxicology and Chemistry), 2001. Guidance Document on Regulatory Testing and Risk Assessment procedures for Plant Protection Products with Non-Target Arthropods. ESCORT 2.
- The United Kingdom, 2011a. Draft Assessment Report (DAR) on the active substance BAS 700 F (fluxapyroxad) prepared by the rapporteur Member State the United Kingdom in the framework of Directive 91/414/EEC, January 2011.
- The United Kingdom, 2011b. Final Addendum to the Draft Assessment Report on BAS 700 F (fluxapyroxad), compiled by EFSA, October 2011.

APPENDICES

APPENDIX A – LIST OF END POINTS FOR THE ACTIVE SUBSTANCE AND THE REPRESENTATIVE FORMULATION

Identity, Physical and Chemical Properties, Details of Uses, Further Information

Active substance (ISO Common Name) ‡

Function (*e.g.* fungicide)

Rapporteur Member State

Co-rapporteur Member State

ber State

Identity (Annex IIA, point 1)

Chemical name (IUPAC) **‡**

Chemical name (CA) ‡

CIPAC No ‡

CAS No ‡

EC No (EINECS or ELINCS) **‡**

FAO Specification (including year of publication) ‡

Minimum purity of the active substance as manufactured ‡

Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured

Molecular formula ‡

Molecular mass ‡

Structural formula ‡

Fluxapyroxad (BAS 700 F)

Fungicide

United Kingdom

France

3-(difluoromethyl)-1-methyl-*N*-(3',4',5'trifluorobiphenyl-2-yl)pyrazole-4-carboxamide

3-(difluoromethyl)-1-methyl-*N*-(3',4',5'-trifluoro[1,1'biphenyl]-2-yl)-1*H*-pyrazole-4-carboxamide

828

907204-31-3

not assigned

not assigned

950 g/kg (pilot plant)

toluene

max. 1 g/kg

 $C_{18}H_{12}F_5N_3O$

381.31 g/mol

Physical and chemical properties (Annex IIA, point 2)

Melting point (state purity) ‡	156.8 °C (99.3 % pure)
Boiling point (state purity) ‡	decomposes before boiling
Temperature of decomposition (state purity)	~ 230 °C (99.3 % pure)
Appearance (state purity) ‡	Fine crystalline powder (99.3 % pure)
	Fine powder (99.4 % technical)
Vapour pressure (state temperature, state purity) ‡	2.7 x 10 ⁻⁹ Pa at 20 °C (99.3 % pure)
	8.1 x 10 ⁻⁹ Pa at 25 °C (99.3 % pure)
Henry's law constant ‡	3.028 x 10 ⁻⁷ Pa m ³ mol ⁻¹
	[Based on vapour pressure of 2.7 x 10^{-9} Pa at 20 C and water solubility of 3.4 mg/L]
Solubility in water (state temperature, state purity	3.78 mg /L at 20 °C (pH 4.01)
and pH) ‡	3.88 mg /L at 20 °C (pH 5.84)
	3.44 mg /L at 20 °C (pH 7.00)
	3.84 mg /L at 20 °C (pH 9.00)
	(99.3 % pure)
	No significant pH dependency of the water solubility was found.
Solubility in organic solvents ‡	Solubility at 20 °C in g/L (99.2 % pure)
(state temperature, state purity)	acetone > 250
	acetonitrile 167.6 ± 0.2 dichloromethane 146.1 ± 0.3
	ethylacetate 123.3 ± 0.2
	methanol 53.4 ± 0.0
	toluene 20.0 ± 0.0 octanol 4.69 ± 0.01
	heptane 0.106 ± 0.001
Surface tension ‡	73.3 mN/m at 20 °C, 3.1 mg/L (90 % of the saturation
(state concentration and temperature, state purity)	solubility in pure water) (99.3 % technical)
Partition co-efficient ‡ (state temperature, pH and purity)	$\log P_{O/W} = 3.08 \text{ at } 20 \text{ °C in water}$
(sure temperature, pri and purity)	$\log P_{O/W} = 3.09 \text{ at } 20 \text{ °C (pH 4)}$
	$\log P_{O/W} = 3.13 \text{ at } 20 \text{ °C } (\text{pH 7})$
	$\log P_{O/W} = 3.09 \text{ at } 20 \text{ °C (pH 9)}$
	(99.3 % pure)
	no pH dependency expected at pH< 12.58
Dissociation constant (state purity) ‡	$pK_{a(\text{HL/H+L})} = 12.58 \pm 0.70 \text{ (calculated)}$
	$pK_{a(H2L/H+HL)} = -2.78 \pm 0.50 \text{ (calculated)}$
	$pK_{a(H3L/H+H2L)} = -5.52 \pm 0.50 \text{ (calculated)}$
	pK _a was estimated using modelling software version 6.00 from ACD/Labs

99.7 % pure UV/VIS absorption (max.) incl. $\varepsilon \ddagger$ (state purity, pH) Neutral solution in methanol (pH = 6.5): absorption maxima λ_{max} 203 nm; ϵ 31582 L.mol⁻¹.cm⁻¹ secondary maxima λ 229 nm; ϵ 23928 L.mol⁻¹.cm⁻¹ Neutral solution methanol water (1:9) (pH = 5.9) absorption maxima λ_{max} 193 nm; ϵ 44100 L.mol⁻¹.cm⁻¹ secondary maxima λ 230 nm; ε 24010 L.mol⁻¹.cm⁻¹ Acid solution methanol : HCl 1 mol/L : water (10:5:85)(pH = 1.4)absorption maxima λ_{max} 199 nm; ϵ 35913 L.mol⁻¹.cm⁻¹ secondary maxima λ 230 nm; ϵ 24137 L.mol⁻¹.cm⁻¹ Basic solution methanol : NaOH 1 mol/L : water (10:5:85) (pH = 12.2) absorption maxima $\lambda_{max} \ 229 \ nm; \ \epsilon \ 23473 \ L.mol^{-1}.cm^{-1}$ secondary maxima λ 215 nm; ε 23227 L.mol⁻¹.cm⁻¹ not highly flammable (99.4 % technical) Flammability **‡** (state purity) Explosive properties *‡* (state purity) not explosive (99.4 % technical) Oxidising properties ‡ (state purity) not oxidising (99.4 % technical)

Summary of representative uses evaluated for fluxapyroxad (BAS 700 F)

Crop and/ or situation	Member State or Country	Product name	F G or I	Pests or Group of pests controlled	For	Formulation Application		Application Application rate per treatment			PHI (days)	Remarks:				
(a)			(b)	(c)	Type (d-f)	Conc. of a.s. (i)	Method Kind (f-h)	Growth stage & season (j)	number min max (k)	interval between applications (days)	kg a.s./hL min max	water L/ha min max	kg a.s./ha min max	Product (kg,L/ha) min max	(1)	(m)
W. Wheat S. Wheat Durum W. Barley S. Barley Triticale Rye Oat	EU	<u>'BAS 700</u> <u>00F'</u>	F	P. herpotrichoides E. graminis Septoria spp. Puccinia spp. P. trticirepentis P. teres R.secalis R. collo-cygni	EC	0.0625	Foliar spray	25-69	2	21 days	0.0417- 0.125	100-300	0.125	2.0	35	-

(a) For crops, the EU and Codex classifications (both) should be used; where

relevant, the use situation should be described (e.g. fumigation of a structure)

(b) Outdoor or field use (F), glasshouse application (G) or indoor application (I)
(c) *e.g.* biting and suckling insects, soil born insects, foliar fungi, weeds
(d) emulsifiable concentrate (EC),

(e) GCPF Codes - GIFAP Technical Monograph No 2, 1989

(f) All abbreviations used must be explained

(g) Method, *e.g.* high volume spraying, low volume spraying, spreading, dusting, drench

(h) Kind, *e.g.* overall, broadcast, aerial spraying, row, individual plant, between the plant - type of equipment used must be indicated

(i) kg/L

(j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application

(k) Indicate the minimum and maximum number of application possible under practical conditions of use

(1) PHI - minimum pre-harvest interval

(m) Remarks may include: Extent of use/economic importance/restrictions

Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical as (analytical technique)	HPLC-UV
Impurities in technical as (analytical technique)	HPLC-UV (230 nm)
Plant protection product (analytical technique)	HPLC-UV (230 nm)

Analytical methods for residues (Annex IIA, point 4.2)

Residue definitions for monitoring purposes

Food of plant origin	Fluxapyroxad (BAS 700 F)
Food of animal origin	Fluxapyroxad (BAS 700 F)
Soil	Fluxapyroxad (BAS 700 F)
Water surface	Fluxapyroxad (BAS 700 F)
drinking/ground	Fluxapyroxad (BAS 700 F)
Air	Fluxapyroxad (BAS 700 F)

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and	HPLC-MS/MS - LOQ 0.01 mg/kg (fluxapyroxad)			
LOQ for methods for monitoring purposes)	UPLC-MS/MS - LOQ 0.01 mg/kg (fluxapyroxad)			
	(dry, high water, high fat and high acid commodities)			
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	HPLC-MS/MS - LOQ 0.01 mg/kg (0.001 mg/kg milk, skimmed milk, cream and egg) (fluxapyroxad)			
Soil (analytical technique and LOQ)	HPLC-MS/MS - LOQ 0.001 mg/kg (fluxapyroxad)			
	UPLC-MS/MS - LOQ 0.001 mg/kg (fluxapyroxad)			
Water (analytical technique and LOQ)	HPLC-MS/MS - LOQ 0.03 µg/L (fluxapyroxad)			
	(drinking and surface water)			
Air (analytical technique and LOQ)	HPLC-MS/MS - LOQ 0.06 µg/m ³ (fluxapyroxad)			
	UPLC-MS/MS - LOQ 0.06 µg/m ³ (fluxapyroxad)			
Body fluids and tissues (analytical technique and LOQ)	No methods of analysis were submitted or required, as fluxapyroxad (BAS 700 F) is not classified as toxic or very toxic.			

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

RMS/peer review proposal

Active substance

Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Rate and extent of oral absorption ‡	At least 68 % of administered dose absorbed within 72 h based on urine (11.5 %) and bile (51 %) excretion, cage wash and carcass residues.
Distribution ‡	Widespread distribution, with highest concentrations in gastrointestinal tract, liver, adrenals and adipose tissues at early sampling times.
Potential for accumulation ‡	Low
Rate and extent of excretion ‡	Rapid, excretion almost complete 2-3 days after dosing. 85-91 % excreted via faeces (51-55 % via bile) and 3.4- 9.3 % via urine by 7 days.
Metabolism in animals ‡	Extensive. Major metabolites formed by hydroxylation at the biphenyl ring, N-demethylation at the pyrazole ring, loss of a fluorine atom at the biphenyl ring, and conjugation with glucuronic acid or with glutathione derivatives. Trace amounts of products from cleavage between the pyrazole and aniline rings.
Toxicologically relevant compounds ‡ (animals and plants)	Fluxapyroxad (BAS 700 F)
Toxicologically relevant compounds ‡ (environment)	Fluxapyroxad (BAS 700 F)

Acute toxicity (Annex IIA, point 5.2)

Rat LD ₅₀ oral ‡	> 2000 mg/kg bw	
Rat LD ₅₀ dermal ‡	> 2000 mg/kg bw	
Rat LC_{50} inhalation \ddagger	> 5.31 mg/L air (4h, nose only, to dust)	
Skin irritation ‡	Not irritating	
Eye irritation ‡	Not irritating	
Skin sensitisation ‡	Not sensitising (M&K test)	

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect **‡**

Rat: Liver (increased weight, hepatocellular centrilobular hypertrophy, enzyme induction), thyroid (follicular cell hypertrophy/hyperplasia, thyroid hormone changes), blood (accelerated clotting), increased calcium, globulin and cholesterol levels

Mouse: Clinical chemistry changes (decreased triglyceride, cholesterol)

Dog: Clinical chemistry changes in spleen (iron staining of connective tissue) and liver (iron staining of hepatocytes, fibrosis)

Relevant oral NOAEL ‡	28-day rat: 9 mg/kg bw/day
	90-day rat: 6 mg/kg bw/day
	90-day mouse: 21 mg/kg bw/day
	1-year dog: 8 mg/kg bw/day
Relevant dermal NOAEL ‡	28-day rat: 300 mg/kg bw/day
Relevant inhalation NOAEL ‡	No data – not required

Not genotoxic (negative in Ames test, *in vitro* chromosome aberration, *in vitro* mammalian gene cell mutation, *in vivo* micronucleus and *in vivo* UDS assays).

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect ‡	Rat: Liver (increased weight, hepatocellular hypertrophy, hepatocellular tumours, fatty change, spongiosis), thyroid (follicular hypertrophy/hyperplasia), bone (iron deposition, hyperstosis of skull bones, tooth whitening), blood (accelerated clotting, reduced MCV, MCH). Mouse: Liver (increased weight and macrovesicular fatty changes), tooth whitening.	
Relevant NOAEL ‡	2.1 mg/kg bw/day; 2-year, rat 21 mg/kg bw/day; 18-month, mouse	
Carcinogenicity ‡	Carcinogenic (liver tumours in rats)R40Increased incidence of thyroid follicular cell tumours at high dose of limited relevance to humansH351	

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction toxicity

Reproduction target / critical effect ‡	Parent: increased liver weight, hepatocellular hypertrophy, reduced body weight gain
	Offspring: reduced body weight gain
	Reproduction: No effect observed up to the highest dose tested
Relevant parental NOAEL ‡	LOAEL 10 mg/kg bw/day
Relevant reproductive NOAEL ‡	300 mg/kg bw/day
Relevant offspring NOAEL ‡	10 mg/kg bw/day

Developmental toxicity

Developmental target / critical effect ‡	Rat:
	Maternal: reduced body weight gain, clinical chemistry changes
	Developmental: no effect up to the limit dose
	<u>Rabbit</u> :
	Maternal: reduced body weight gain
	Developmental: post-implantation loss plus increased incidence of paw hyperflexation, a minor transient change
Relevant maternal NOAEL ‡	Rat: 25 mg/kg bw/day
	Rabbit: 25 mg/kg bw/day
Relevant developmental NOAEL ‡	Rat: 1000 mg/kg bw/day
	Rabbit: 25 mg/kg/day
Neurotoxicity (Annex IIA, point 5.7)	
A	Transient miner heles is multiplement of a most d

Acute neurotoxicity ‡	Transient minor behavioural changes observed, NOAEL 125 mg/kg bw	
Repeated neurotoxicity ‡	90-day study:	
	No evidence of neurotoxicity up to 302 mg/kg bw/day	
	NOAEL 11.5 mg/kg bw/day based on increased thyroid weight and liver hypertrophy	
Delayed neurotoxicity ‡	No data – not required	

Other toxicological studies (Annex IIA, point 5.8)

Mechanism studies ‡	A liver enzyme induction study showed that fluxapyroxad (BAS 700 F) induced liver hypertrophy is associated with increased activity of phase I enzymes, PROD and BROD (both of the CYP2B1 family), and increased activities of the phase II enzymes MUF-GT, HOBI-GT and T4-UDP-GT. This response is indicative of a phenobarbital-type enzyme induction by fluxapyroxad (BAS 700 F). A weak enzyme induction response occurred at the lowest oral dose level investigated (dietary level of 50 ppm, intake of ~3 mg/kg bw/day).
	A thyroid hormone study showed that fluxapyroxad (BAS 700 F) causes increased TSH levels and decreased T_4 levels at a relatively high exposure level (dietary level of 1500 ppm, intake of ~105 mg/kg bw/day).
	A thyroid function test demonstrated that fluxapyroxad (BAS 700 F) induced thyroid hypertrophy is not related to a defect in the organification of iodine.
	A quantitative analysis of fluxapyroxad (BAS 700 F) induced hepatocyte proliferation demonstrated that this response occurs in mainly the centrilobular region of the liver and is more pronounced in females. Proliferation occurred from dietary concentration of 1500 ppm (intake ~60-80 mg/kg bw/day) in males and from 50 ppm in females (intake ~15 mg/kg bw/day, the lowest dose level

investigated).

Studies performed on metabolites or impurities ‡	Metabolite M700F001
	Rat oral $LD_{50} > 2000 \text{ mg/kg bw}$
	Not genotoxic (negative in Ames, <i>in vitro</i> chromosome aberration, <i>in vitro</i> mammalian gene cell mutation, <i>in vivo</i> micronucleus tests).
	NOAEL in 90-day dietary rat study 1000 mg/kg bw/day (highest dose level tested).
	NOAEL in rabbit developmental toxicity study for maternal and developmental toxicity 250 mg/kg bw/day (highest dose level tested; severe maternal toxicity at ≥500 mg/kg/day in range-finding studies).
	No ARfD allocated.
	ADI 0.25 mg/kg bw/day based on the developmental toxicity study, AF 1000.
	Metabolite M700F002
	Rat oral $LD_{50} > 2000 \text{ mg/kg bw}$
	Not genotoxic (negative in Ames, <i>in vitro</i> chromosome aberration, <i>in vitro</i> mammalian gene cell mutation, <i>in vivo</i> micronucleus tests).
	NOAEL in 90-day dietary rat study 1000 mg/kg bw/day (highest dose level tested).
	NOAELs in rabbit developmental toxicity study: 300 mg/kg bw/day for maternal (based on reduction of body weight gain and food consumption) and 1000 mg/kg bw/day developmental toxicity (the highest dose tested).
	No ARfD allocated.
	ADI 0.3 mg/kg bw/day based on the developmental toxicity study, AF 1000.
	Metabolite M700F048
	Rat oral $LD_{50} > 2000 \text{ mg/kg bw}$
	Not genotoxic (negative in Ames, <i>in vitro</i> mammalian gene cell mutation, <i>in vivo</i> micronucleus, <i>in vivo</i> UDS assays, positive in <i>in vitro</i> chromosome aberration test).
	NOAEL in 28-day dietary rat study 200 mg/kg bw/day. LOAEL 1000 mg/kg bw/day, based on observation of liver hypertrophy and reduced body weight gain.
	NOAELs in rabbit developmental toxicity study: 30 mg/kg bw/day for maternal and developmental toxicity based on reduced body weight gain and food intake and increased incidence of abortions at 100 mg/kg bw/day. In this study there was no evidence of a specific adverse effect on development.

Medical data ‡ (Annex IIA, point 5.9)

No adverse health effects suspected to be related to fluxapyroxad (BAS 700 F) exposure have been observed.

Summary (Annex IIA, point 5.10)

ADI ‡

AOEL ‡

ARfD ‡

Value	Study	Assessment factor
0.02 mg/kg bw/day	Rat, 2-year study	100
0.04 mg/kg bw/day	Rat, 90-day study	147* (100 + 68 %*)
0.25 mg/kg bw	Rabbit (developmental effects), and rat, (maternal effects) developmental toxicity studies	100

* correction for low oral absorption (68 %)

Dermal absorption ‡ (Annex IIIA, point 7.3)

Formulation ('BAS 700 00F', 62.5 g flux apyroxad (BAS 700 F)/L EC) Concentrate: 8 % Dilution (0.37 g/l): 16 %

Exposure scenarios (Annex IIIA, point 7.2)

		· · ·	
Operator	Exposure estimates using tractor-mounted equipment, application rate 0.125 kg a.s./ha:		
	German model	<u>% of AOEL</u>	
	Without PPE	48 %	
	UK POEM	% of AOEL	
	Without PPE	450 %	
	With PPE (gloves at mixing/loading)	350 %	
	With PPE (gloves at mixing/loading & ap		
117 1			
Workers	Exposure estimates for workers entering cereal crops to perform tasks such as crop inspection indicate that the		
	levels of exposure to fluxapyroxad (BAS 700 F) will be		
	50 % of the systemic AOEL without PPE, assuming 2 applications and no dissipation of dislodgeable foliar residues between treatments.		
Desets in lang	Exposure estimates for bystanders exposed to fluxapyroxad (BAS 700 F) through spray drift, vapour		
Bystanders			
		um, vapou	
	and fallout:		
		<u>% of AOEL</u>	
	Exposure to spray drift:	< 2 %	
	Exposure to vapour:	10 % (adult)	
		21 % (child)	
	Exposure to fallout:	< 1 %	

Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

Fluxapyroxad (BAS 700 F)

RMS/peer review proposal

Under Council Directive 67/548/EEC:

R40 Carcinogenicity category 3 "limited evidence of a carcinogenic effect"

Under Regulation (EC) 1272/2008:

H351 Carcinogenicity category 2 "suspected of causing cancer"

Residues

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered	Cereals (wheat), fruit (tomato), pulses and oilseeds (soyabean).		
Rotational crops	Confined metabolism studies on leafy crops (spinach), root crops (radish) and cereals (wheat).		
Metabolism in rotational crops similar to metabolism in primary crops?	Yes		
Processed commodities	Parent compound stable under hydrolytic conditions representative of pasteurisation, baking, brewing and boiling and sterilisation.		
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Yes.		
Plant residue definition for monitoring	Fluxapyroxad (BAS 700F) - All crop categories.		
Plant residue definition for risk assessment	Fluxapyroxad (BAS 700F) - All crop categories.		
Conversion factor (monitoring to risk assessment)	N/A		

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

Animals covered	Goats, hens	
Time needed to reach a plateau concentration in milk and eggs	Milk: 5-7 days (feeding study)	
	Rapid depletion of the total radioactivity 1 day post dosing.	
	Eggs: 10-12 days (metabolism study)	
Animal residue definition for monitoring	Fluxapyroxad (BAS 700F)	
Animal residue definition for risk assessment	Fluxapyroxad (BAS 700F) and metabolite M700F008 expressed as parent equivalent.	
Conversion factor (monitoring to risk assessment)	N/A.	
	A feeding study analysing fluxapyroxad (BAS 700F), and metabolites M700F008 and M700F002 in poultry and ruminant matrices is available.	
Metabolism in rat and ruminant similar (yes/no)	Yes	
Fat soluble residue: (yes/no)	Yes	
	Log P_{ow} at pH 7 = 3.13	
	Feeding studies indicate the highest residue level in ruminant fat (0.024 mg/kg).	

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

Rotational crops field trials on cereals (wheat), root crops (carrots), flowering brassica (cauliflower, broccoli) and leafy crops (lettuce) were conducted at a dose rate of 250 g a.s/ha (1N).

-Fluxapyroxad (BAS 700F):

Up to 0.08 mg/kg in carrot root (plant back interval: 31 d),

Up to 0.06 mg/kg in immature cauliflower leaves (PBI: 31 d),

Up to 0.03 mg/kg in immature lettuce (PBI: 31 d).

-M700F048:

Very low residue situation : <0.01-0.02 mg/kg in immature cauliflower leaves at all PBIs.

-M700F008, M700F002.

Residue levels below the LOQ (0.01 mg/kg) in all crops at all PBIs.

Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 Introduction)

Frozen storage stability (-20°C): Fluxapyroxad (BAS 700F): 737 days in all matrices Metabolite M700F002: 824 days in all matrices Metabolite M700F048: 733 days in high starch, high acid, high oil and high water content matrices and in wheat straw. Metabolite M700F008: 725 days in high starch matrices and in wheat straw, and up to 133 days in high oil and

high water content matrices.

Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

Ruminant: Poultry: Pig: Conditions of requirement of feeding studies Expected intakes by livestock $\geq 0.1 \text{ mg/kg}$ diet Dairy: 1.627 mg/kg 0.22 mg/kg DM N/A (dry weight basis) (yes/no - If yes, specify the DM level) Beef: 3.76 mg/kg DM Potential for accumulation (yes/no): Yes N/A No Metabolism studies indicate potential level of Yes (liver, kidney, No N/A residues ≥ 0.01 mg/kg in edible tissues (yes/no) only) Feeding studies (Specify the feeding rate in cattle and poultry studies considered as relevant) Residue levels in matrices : Mean (max) mg/kg 1.4 N Overdosing factor 1.6 N (Beef) 3.7 N (Dairy)

Muscle	<0.01 mg/kg ⁽¹⁾	<0.01 mg/kg ⁽¹⁾	N/A
Liver	0.015 mg/kg ⁽¹⁾	<0.01 mg/kg ⁽¹⁾	N/A
Kidney	$< 0.01 mg/kg^{(1)}$	N/A	N/A
Fat	0.024 mg/kg ⁽¹⁾	<0.01 mg/kg ⁽¹⁾	N/A
Milk	$0.0025 \text{ mg/kg}^{(2)}$	N/A	N/A
Eggs	N/A	0.0111 mg/kg ⁽²⁾	N/A

⁽¹⁾: The highest residue levels were considered in tissues.
 ⁽²⁾: The average of the residue levels in whole milk and eggs recovered over the course of the feeding study (28 days).

Summary of residues data according to the representative uses on raw agricultural commodities and feedingstuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

Сгор	Northern or Mediterranean Region, field or glasshouse, and any other useful information	Trials results relevant to the representative uses (a)	Recommendation/comments	MRL estimated from trials according to the representative use (d)	HR (c)	STMR (b)
Wheat	N EU	Grain: 0.01; 0.02; 0.03; 0.04; 0.04; 0.06 mg/kg Straw: 0.44; 1.0; 1.02; 1.80; 2.78; 6.05 mg/kg	2 additional residue trials on wheat are required. Extrapolation to triticale and rye.	0.1 (Provisional)	0.06 (Provisional)	0.03 (Provisional)
	S EU	Grain: 0.01; 0.01; 0.01; 0.02; 0.03; 0.05 mg/kg Straw: 0.46; 0.55; 0.64; 1.0; 1.19; 2.58 mg/kg	2 additional residue trials on wheat are required. Extrapolation to triticale and rye.	0.1 (Provisional)	0.05 (Provisional)	0.02 (Provisional)
Triticale	N EU S EU	Grain: <0.01; 0.03 mg/kg Straw: 0.32; 1.55 mg/kg Grain: 0.02; 0.02 mg/kg Straw:				

		0.49; 0.55 mg/kg				
Barley	N EU	Grain:	Extrapolation to oat.	0.5	0.23	0.15
		0.02; 0.05; 0.08; 0.13; 0.17; 0.18; 0.19; 0.23 mg/kg				
		Straw:				
		0.11; 0.12; 0.44; 0.47; 0.64; 0.74; 1.79; 2.37 mg/kg				
	S EU	Grain:	Extrapolation to oat.	0.6	0.41	0.13
		0.08; 0.09; 0.10; 0.10; 0.15; 0.23; 0.24; 0.41 mg/kg				
		Straw:				
		0.11; 0.36; 0.45; 0.80; 0.96; 1.03; 1.29; 1.24 mg/kg				

(a) Numbers of trials in which particular residue levels were reported *e.g.* $3 \times < 0.01$, 1×0.01 , 6×0.02 , 1×0.04 , 1×0.08 , 2×0.1 , 2×0.15 , 1×0.17

(b) Supervised Trials Median Residue *i.e.* the median residue level estimated on the basis of supervised trials relating to the representative use

(c) Highest residue

(d) Based upon a UK MRLs application the proposed MRLs for wheat and barley are proposed at 0.4 mg/kg and 2.0 mg/kg respectively.

ADI	0.02 mg/kg bw/day
TMDI (% ADI) according to EFSA PRIMo Model rev.2A°	15.5% ADI (UK toddler)
Factors included in TMDI	-STMR values for cereal grains,
	-Default MRL of 0.1 mg/kg on root and tuber vegetables (including sugar beet and potatoes) and on leaves and sprouts of brassica <i>spp</i> .,
	-MRLs on animal matrices,
	-Processing factor of 3 set for cereal bran.
ARfD	0.25 mg/kg bw
IESTI (% ARfD) according to EFSA PRIMo Model rev.2A	4.9% ARfD (potatoes, UK infant)
Factors included in IESTI and NESTI	-STMR values for cereal grains.
	-HR of 0.08 mg/kg on root and tuber vegetables (including sugar beet and potatoes),
	-HR of 0.06 mg/kg on leaves and sprouts of brassica <i>spp</i> .,
	-MRLs for animal commodities,
	-Processing factor of 3 set for cereal bran.

Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)⁽³⁾

(3): The consumer dietary intake will be recalculated according to the outcome of the 2 additional residue trials requested on wheat.

Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

Crop/ process/ processed product	Number of studies	Processir	ng factors	Amount	
		Transfer factor	Yield factor	transferred (%) (Optional)	
Wheat \rightarrow bran	4 trials (2	3.1	-	-	
Flour	replicates each)	0.24	-	-	
Bread white		0.17	-	-	
Whole meal		1.04	-	-	
Bread whole meal	-	0.71	-	_	
Germ		1.4	-	-	

Proposed MRLs (Annex IIA, point 6.7, Annex IIIA, point 8.6)

Commodity	Proposed EU MRLs (mg/kg)
Wheat/Triticale/Rye	0.1 (provisional)
Barley/Oats	0.6
Root and tuber vegetables (including potatoes and sugar beet)	0.1
Leaves and sprouts of brassica <i>spp</i> .	0.1
Whole milk	0.001*
Eggs	0.01
Muscle, liver, kidney, poultry fat	0.01*
Ruminant fat	0.02

When the MRL is proposed at the LOQ, this should be annotated by an asterisk after the figure.

Environmental fate and behaviour

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1)

Mineralization after 100 days ‡	12.7 % after 120 d, [aniline- 14 C]-label (n ¹¹ = 1) 0.2 - 7.3 % after 120 d, [pyrazole-4- 14 C]-label (n= 4)				
	6 % after 120 d, [trifluorophenyl-U- 14 C]-label (n= 1)				
Non-extractable residues after 100 days ‡	54.7 % after 120 d, [aniline- ¹⁴ C]-label (n= 1)				
	10.2 – 25.9 % after 120 d, [pyrazole-4- ¹⁴ C]-label (n= 4)				
	29.9 % after 120 d, [trifluorophenyl-U- 14 C]-label (n= 1)				
Metabolites requiring further consideration ‡	M700F001 – 13.9 % at 30 d (n= 4)				
- name and/or code, % of applied (range and maximum)	M700F002 – 38.9 % at 120 d (n=4)				
	[pyrazole-4- ¹⁴ C] label				
	None > 5 % AR for [aniline- 14 C]- and [trifluorophenyl-U- 14 C]- label				

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

3 % after 120 d, [aniline-U- ¹⁴ C]-label (n= 1)			
6 % after 120 d, [pyrazole-4- ¹⁴ C]-label (n= 1)			
0.3-32.1 % after 120 d, [aniline-U- ¹⁴ C]-label (n= 1)			
3.4-13.9 % after 120 d, [pyrazole-4- ¹⁴ C]-label (n= 1)			
M007F001 – 19.6- <i>19.9</i> % at 120 d (n= 1)			
1007F002 – 3.5-3.9 % at 120 d (n= 1)			
pyrazole-4- ¹⁴ C]-label			
fone > 5 % AR for [aniline- ¹⁴ C]-label			
fone > 5 % AR			

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies **‡**

Parent –	Aerobic condi	Aerobic conditions							
Fluxapyroxad (BAS 700 F)									
Soil type (USDA)	pH (CaCl ₂)	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20°C pF2/10kPa	St. (χ ²)	Method of calculation			

¹¹ n corresponds to the number of soils.

Bruch West - Sandy loam –	7.1	20 °C / 40 %	71.9/ 455	55.4	1.0	FOMC
aniline label						
Bruch West - Sandy loam –	7.1	20 °C / 40 %	76.5/ 254	59.0	2.2	SFO
aniline label						
Bruch West - Sandy loam –	7.1	20 °C / 40 %	68.8/ 229	53.0	2.0	SFO – box model
pyrazole label						
Bruch West - Sandy loam –	7.1	20 °C / 40 %	144/ 478	111	1.4	SFO
trifluorophenyl label						
Bruch West - Sandy loam Geomean			89.3	68.8		
Arahal – silty clay loam - pyrazole label	7.6	20 °C / 40 %	357/>1000	203	2.3	DFOP
Arahal – silty clay loam - pyrazole label	7.6	20 °C / 40 %	244/ 809	139	6.9	SFO
Kleve Keeken – loam – pyrazole label	6.7	20 °C / 40 %	689/>1000	424	2.2	SFO
Nierswalde – silt loam – pyrazole label	6.4	20 °C / 40 %	599/>1000	396	1.1	DFOP
Nierswalde – silt loam – pyrazole label	6.4	20 °C / 40 %	409/>1000	271	2.7	SFO
Nierswalde – silt loam – pyrazole label	6.4	10 °C / 40 %	810/>1000	207	1.8	SFO
Nierswalde – silt loam – pyrazole label			696	286.3		
Geomean						
**Geometric mean D (calculated for model			281	183		

Bold font = best fit kinetics for triggering purposes. Standard font is an alternative fit for that soil used for modelling purposes.

**Geometric mean DT_{50} values were calculated for use in modelling. Therefore, where both best fit and modelling fit kinetics are reported, the geometric mean is calculated from the kinetic fit for modelling. Where more than one test value is available for an individual soil, a geometric mean was taken of those values for use in the overall geometric mean calculation. The calculated geomean value for Bruch West soil used in the overall geometric mean calculation for use in modelling was 70.3 d.

M700F001	Aerobic cond	itions					
Soil type (USDA)	pH (CaCl ₂)	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	f. f. k _{dp} /k	DT ₅₀ (d) 20°C pF2/10kPa	St. (χ^2)	Method of calculation
†Bruch West - Sandy loam – pyrazole label	7.1	20 °C / 40 %	10/ 33.1	0.99	7.7	25.1	SFO – box model
*Li10 – Loamy sand – pyrazole label	6.3	20 °C / 40 %	9.3/ 30.7	-	8.9	2.9	SFO – box model
*LUFA 2.2 – Sand – pyrazole label	5.9	20 °C / 40 %	6.5/ 21.5	-	5.2	1.1	SFO – box model
*Wisconsin – Loamy sand – pyrazole label	5.9	20 °C / 40 %	2.3/ 9.2	-	2.1	3.1	FOMC – box model
*Wisconsin – Loamy sand – pyrazole label	5.9	20 °C / 40 %	2.5/ 8.2	-	2.3	4.8	SFO – box model
Geometric mean DT ₅₀ (calculated for modelling)			6.2		5.4		

*M700F001 applied

† Parent applied study

Bold font indicates best fit kinetics for triggering purposes

M700F002	Aerobic conditions							
Soil type	рН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	† f. f. k_{dp}/k_{f}	DT ₅₀ (d) 20°C pF2/10kPa	St. (χ^2)	Method of calculation	
*Li10 – Loamy sand – pyrazole label	6.3	20 °C / 40 %	168/ 557	0.90	161	2.2	SFO – box model	
*LUFA 2.2 – Sand – pyrazole label	5.9	20 °C / 40 %	148/ 490	0.79	117	2.1	SFO – box model	
*Wisconsin – Loamy sand – pyrazole label	5.9	20 °C / 40 %	131/435	0.77	118	3.4	SFO – box model	
‡Li10 – Loamy sand – pyrazole label	6.3	20 °C / 40 %	152/ 567 – overall; 0.968 DT50 fast; 178 DT50 slow	-	123 overall; 0.786 fast; 145 slow	0.4	DFOP	
‡LUFA 2.2 – Sand – pyrazole label	5.9	20 °C / 40 %	147/ >1000	-	147	1.9	FOMC	

‡LUFA 2.2 – Sand – pyrazole label	5.9	20 °C / 40 %	120/ 567 overall; 4.86 DT50 fast; 193 DT50 slow	-	120 overall; 4.86 fast; 193 slow	2.1	DFOP
‡Wisconsin – Loamy sand – pyrazole label	5.9	20 °C / 40 %	76.6/ >1000	-	70.4	2.2	FOMC
‡Wisconsin – Loamy sand – pyrazole label	5.9	20 °C / 40 %	83.1/454 – overall; 5.06 DT50 fast; 161 DT50 slow		76.3 overall; 4.65 fast; 148 slow	2.5	DFOP
‡Bruch West – Sandy loam – pyrazole label	7.4	20 °C / 40 %	197/>1000	-	134	2.0	FOMC
‡Bruch West – Sandy loam – pyrazole label	7.4	20 °C / 40 %	158/ 636 – overall; 9.94 DT50 fast; 204 DT50 slow	-	108 overall; 6.78 fast; 139 slow	2.2	DFOP
Geometric mean D [*] (calculated for mod			164 slow	0.82	143 slow		

*M700F001 applied

\$M700F002 applied

†Formation fraction from M700F001

**Geometric mean DT_{50} values were calculated for use in modelling. Therefore, where both best fit and modelling fit kinetics are reported, the geometric mean is calculated from the kinetic fit for modelling. Where more than one test value is available for an individual soil, a geometric mean was taken of those values for use in the overall geometric mean calculation. Calculated geomean values for individual soils were 153 d for Li10; 150 d for LUFA 2.2; and 132 d for Wisconsin. Bold font indicates best fit kinetics for triggering purposes.

Field studies **‡**

Fluxapyroxad (BAS 700 F) – triggering endpoints	Aerobic conditions							
Soil type (USDA).	Location (country or USA state).	pH (CaCl ₂)	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ ²)	DT ₅₀ (d) Norm.	Method of calculation
Loam – bare soil	Wilson, UK	6.9	0-30	370	>1000	6.8	-	FOMC
Loamy sand – bare soil	Garz, Germany (East)	5.0	0-30	140	>1000	8.5	-	FOMC

Silt Loam – bare soil	Goch-Nierswalde, Germany (West)	6.1	0-30	132	>1000	6.4	-	FOMC
Silt Loam – bare soil	Meistratzheim, France	7.4	0-20	284	>1000	7.0	-	FOMC
Silt Loam – bare soil	Poggio Renatico, Italy	7.6	0-10	38.9	854	6.7	-	DFOP
Silty Clay Loam – bare soil	Alberic, Spain	7.7	0-50	124†	882†	8.4†	-	FOMC
Geometric mean/me		-	-	-	-	-		
M700F002 – triggering endpoints	Aerobic conditions							
Soil type (USDA)	Location	рН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ^2)	DT ₅₀ (d) Norm.	Method of calculation
Loamy sand – bare soil	Middelfart, Denmark	5.8	0 - 40	39.2	188	12.0	-	FOMC
Silt Loam – bare soil	Goch-Nierswalde, Germany	6.4	0 - 40	38.0	155	5.7	-	FOMC
Silt Loam – bare soil	Poggio Renatico, Italy	7.7	0 - 70	37.4	186	7.0	-	FOMC
Loam – bare soil	Meauzac. Southern France	5.5	0 - 60	25.5	84.8	6.9	-	SFO
Geometric mean/me	-	-	-	-	-			

† Modelling performed by the RMS excluding the initial concentration (see text at Section B.8.1.3.1.1 for full discussion)

Fluxapyroxad (BAS 700 F) – Modelling endpoints	Aerobic conditions							
Soil type (USDA).	Location (country or USA state).	pH (CaCl ₂)	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (χ ²)	DT ₅₀ (d) Norm.	Method of calculation
Loam – bare soil	Wilson, UK	6.9	0-30	-	-	7.1	26.8 fast; 187 slow	HS
Loamy sand – bare soil	Garz, Germany (East)	5.0	0-30	-	-	7.1	83.9	SFO
Silt Loam – bare soil	Goch-Nierswalde, Germany (West)	6.1	0-30	-	-	4.6	28.5 fast; 193 slow	HS
Silt Loam – bare soil	Meistratzheim, France	7.4	0-20	-	-	7.7	132	SFO

Silt Loam – bare soil	Poggio Renatico, Italy	7.6	0-10	-	-	8.3	40.1 fast; 224 slow	HS
Silty Clay Loam – bare soil	Alberic, Spain	7.7	0-50	-	-	8.0†	131†	SFO
Geometric mean/me		-	-	-	59.5 fast; 151 slow	-		
M700F002 – Modelling endpoints	Aerobic conditions							
Soil type	Location	pН	Depth (cm)	$DT_{50}(d)$ actual	DT ₉₀ (d) actual	St. (χ^2)	DT ₅₀ (d) Norm.	Method of calculation
Loamy sand – bare soil	Middelfart, Denmark	5.8	0 - 40	-	-	13.2	17.9	SFO
Silt Loam – bare soil	Goch-Nierswalde, Germany	6.4	0 - 40	-	-	10.3	23.1	SFO
Silt Loam – bare soil	Poggio Renatico, Italy	7.7	0 - 70	-	-	11.9	44.1	SFO
Loam – bare soil	Meauzac. Southern France	5.5	0 - 60	-	-	9.1	24.6	SFO
Geometric mean/me	-	-	-	25.9	-			

† Modelling performed by the RMS excluding the initial concentration (see text at Section B.8.1.3.1.1; The United Kingdom, 2011a)

pH dependence ‡ (yes / no) (if yes type of dependence)

No	
Studies ongoing. No analysis performed at the time of the assessment.	

Soil accumulation and plateau concentration \ddagger

Laboratory studies **‡**

Fluxapyroxad (BAS 700 F)	Anaerobic con	nditions				
Soil type	pH (CaCl ₂)	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20°C pF2/10kPa	St. (χ ²)	Method of calculation

BruchWest – Sandy loam – Aniline label	7.4	20 °C/ 40 % MWHC up to 30 d – flooded thereafter	81.5/271 (aerobic phase, 0-30 d*); 301/>1000 (anaerobic phase, 30 d – 120 d*)	-	1.3	HS*
BruchWest – Sandy loam – Pyrazole label	7.4	20 °C/ 40 % MWHC up to 30 d – flooded thereafter	76.2/253 (aerobic phase, 0 – 30 d*); 224/743 (anaerobic phase, 30 d – 120 d*)	-	1.6	HS*
Geometric mean		-	78.8 d DT_{50} (aerobic phase, 0 - 30 d*); 260 d DT_{50} (anaerobic phase, 30 d - 120 d*)	-	-	-

* HS modelling performed – Break point fixed to 30 d when the soils were flooded, with the first phase assumed as aerobic degradation and the second phase as anaerobic degradation

Fluxapyroxad (BAS 700 F) ‡	Fluxapyroxad (BAS 700 F) ‡										
Soil Type	OC %	Soil pH	Kd	Koc	Kf	Kfoc	1/n				
		(CaCl ₂)	(mL/g)	(mL/g)	(mL/g)	(mL/g)					
LUFA 2.1, Sand	0.52	5.2			4.3	818	0.945				
Obihiro, Sandy Loam*	2.74	5.6			15.2*	556*	0.897*				
Li 10, Loamy Sand	0.88	5.9			6.8	777	0.916				
New Jersey, Silt Loam	0.90	6.3			8.6	955	0.921				
Nierswalde, Silt Loam	1.63	6.5			17.9	1101	0.942				
LUFA 2.3,Sandy Loam	1.09	6.9			5.7	527	0.875				
La Gironda, Silty Clay Loam	3.84	7.5			12.3	320	0.902				
California, Sandy Loam	0.41	7.6			2.5	603	0.900				
Arithmetic mean/median				8.3	728	0.914					
pH dependence, Yes or No		No									

Soil adsorption/desorption (Annex IIA, point 7.1.2)

*Volcanic ash - excluded from mean calculation

M007F001 ‡	M007F001 ‡								
Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n		
LUFA 2.1, Sand	0.52	5.2			0.02	4.2	0.715		
Obihiro, Sandy Loam*	2.74	5.6			1.8	65.8	0.981		
Li 10, Loamy Sand	0.88	5.9			0.03	3.6	1.047		
New Jersey, Silt Loam	0.90	6.3			0.03	3.4	0.914		
Nierswalde, Silt Loam	1.63	6.5			0.11	6.7	1.002		
LUFA 2.3,Sandy Loam	1.09	6.9			0	0	0.9**		
La Gironda, Silty Clay Loam	3.84	7.5			0	0	0.9**		
California, Sandy Loam	0.41	7.6			0	0	0.9**		
Arithmetic mean/median			0.03	2.6	0.911				
pH dependence (yes or no)									

*Volcanic ash - excluded from mean calculation; **Focus default

M007F002 ‡									
Soil Type	OC %	Soil pH	Kd	Koc	Kf	Kfoc	1/n		
			(mL/g)	(mL/g)	(mL/g)	(mL/g)			
LUFA 2.1, Sand	0.52	5.2			0.07	13.1	0.969		
Obihiro, Sandy Loam*	2.74	5.6			2.74	99.9	0.963		
Li 10, Loamy Sand	0.88	5.9			0.04	4.8	0.842		
New Jersey, Silt Loam	0.90	6.3			0.13	14.1	1.165		

Nierswalde, Silt Loam	1.63	6.5	0.15	9	0.937
LUFA 2.3,Sandy Loam	1.09	6.9	0.06	5.6	1.078
La Gironda, Silty Clay Loam	3.84	7.5	0.04	1	0.99
California, Sandy Loam	0.41	7.6	0.02	5.6	0.764
Arithmetic mean/median	· · ·	0.07	7.6	0.964	
pH dependence (yes or no)					

*Volcanic ash - excluded from mean calculation

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

	-)	,	r				
Column leaching ‡		No dat	a submitted –	none required.			
Aged residues leaching ‡		No dat	ta submitted –	none required.			
Lysimeter/ field leaching studies ‡		No dat	a submitted –	none required.			
PEC (soil) (Annex IIIA, point 9.1.3)							
Parent – Fluxapyroxad (BAS 700 F) Method of calculation	*DT ₅₀ normal		field, worst-ca	se, best-fit, non-			
Method of Calculation	$DT_{90} > 1000 d (alpha = 0.2059; beta = 13.1342)$						
	*Kinetics: FOMC						
		Field o	r Lab: represer	ntative worst-ca	ase from field studies.		
Application data		Crop: wheat					
		Depth of soil layer: 5cm					
		Soil bulk density: 1.5 g/cm ³					
		% plant interception: first application 50 %					
		second application 70% (FOCUS Groundwater guidance)					
		Number of applications: 2					
		Interval (d): 21					
				105 //.			
		Application rate(s): 2 x 125 g a.s./ha					
$\mathbf{PEC}_{(s)}$	Single applica	tion	Single application	Multiple application	Multiple application		
(mg/kg)	Actual		Time weighted	Actual	Time weighted		

		average		average
Initial	0.083		0.119	
Short term 24h	0.082	0.082	0.117	0.118
2d	0.081	0.082	0.116	0.117

		1	0.079	0.081			0.116	
4d						0.114		-
e).112	0.115	
28			0.066	0.072		0.100	0.108	
50			0.060	0.068		0.093	0.103	
10)0d		0.053	0.062	C	0.084	0.095	L
*Plateau concentration			.188 mg/kg after	-				
concentration	Steady st	ate concentr	ation 0.070 mg/k	kg after	13 yr (20) cm mixing (depth)	
	is reache	d.	port of the accum	ulation	in soil fie	eld study onc	e the plateau	
* For the calculation of Pl	EC _{soil,accu} a I	OFOP kinetic	fit was used					
Metabolite I – M700F Method of calculation	001				0.462 (DT ₅₀ (d Kinetic Field or	176.1/381.13 l): 10 days s: SFO	entative worst	
Application data					(assum maximi	ing M700F0 um of 12.1 %	umed: 13.98 g 01 is formed a 6 of the applied	t a d dose,
					Crop in	terception: 5	ween applications of the second.	ons)
$PEC_{(s)}$			Single	Singl	e	Multiple	Multiple	;
(mg/kg)			application	appli	cation	application	n applicati	on
			Actual	Time weig avera	hted	Actual	Time we average	righted
Initial			0.0075			х		
Short term 24h			0.0070	0.007	75	х	x	
2d			0.0065	0.007	72	x	x	
4d			0.0056	0.007	70	x	x	
Long term 7d			0.0046	0.005	59	x	x	
28d			0.0011	0.003	33	x	x	
50d			0.0002	0.002	21	x	х	
100d			0.0000	0.00	1	x	х	
Plateau concentr								
			r final report of t ateau is reached.	he accu	mulation	in soil field	study	

Metabolite II – M700F002

Method of calculation

Molecular weight relative to the parent: 0.425 (162.0/381.13)

-

		Kineti	d): 39.2 days; DT es: FOMC (alpha r Lab: worst-case	2.4056; beta 117.5)
Application data		(assum of 70.5	ed M700F002 is	ed: 74.91 g a.s./ha formed at a maximum d dose, no degradation
			terception: 50 % second.	for 1 st application; 70
PEC _(s) (mg/kg)	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	0.040		х	
Short term 1d	0.039	0.040	х	х
2d	0.038	0.039	х	х
4d	0.037	0.038	х	X
Long term 7d	0.035	0.037	х	х
28d	0.024	0.031	х	х
50d	0.017	0.026	х	Х
100d	0.009	0.019	Х	X
concentration acc	k concentration 0 umulation of pare maximum occurr	ent and correction		mass
	a gap for final report of the accumulation in soil field ly once the plateau is reached.			

Hydrolytic degradation of the active substance and	<u>Fluxapyroxad (BAS 700 F)</u>
metabolites $> 10 \% \ddagger$	pH 4,5,7, 9: stable at 50 °C
	No metabolites detected.
	<u>M700F007</u>
	pH 4,5,7, 9: stable at 25 °C
	No metabolites detected.
Photolytic degradation of active substance and	Fluxapyroxad (BAS 700 F)
metabolites above 10 % ‡	DT ₅₀ : stable
	continuous irradiation for 15 days with a xenon arc lamp of light intensity 30 W/m ² (λ <290 nm removed; simulating 48°N)
	<u>M700F007</u>
	DT ₅₀ : stable
	continuous irradiation for 15 days with a xenon arc lamp of light intensity 30 W/m ² (λ <290 nm removed; simulating 48°N)
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	Not calculated
Readily biodegradable ‡ (yes/no)	Not readily biodegradable.

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Degradation in water / sediment

Fluxapyroxad (BAS 700 F) – dark system	Maximum observed in water immediately after application at day 0; Maximum observed in sediment 73.9 – 77.0 % AR at study termination (day 100)									
Water / sediment system	pH water phase	pH sed (CaCl ₂)	t. °C	DT ₅₀ -DT ₉₀ whole sys.	St. (χ ²)	DT ₅₀ -DT ₉₀ water	St. (χ^2)	DT ₅₀ - DT ₉₀ sed	St. (χ^2)	Method of calculation
Berghauser Altrhein Speyer, Germany	7.3	7.4	20	> 1000	0.8	3.4/ 87.7	1.4	NC	NC	HS – whole system; FOMC - water
Ranschgraben Schifferstadt, Germany	7.2	5.4	20	694/ >1000	0.8	5.1/264	2.5	NC	NC	SFO – whole system; FOMC - water
Geometric mean/r	nedian		-	-		-		-		-

NC = Not calculated due to insufficient decline phase

Metabolites –	No metabolites observed above 5 % AR.
dark experiment	

Mineralization and non-extractable residues							
Water / sediment system - Dark	pH water phase	pH sed (CaCl ₂)	Mineralization x % after 100 d. (end of the study).	Non-extracted residues in sed. Max x % after n d	Non-extractable residues in sed. Max x % after 100 d (end of the study)		
Berghauser Altrhein Speyer, Germany	7.3	7.4	0.5 - 1.1 % AR	9.1 - 11.2 % AR after 62 – 100 d	9.1 - 11.1 % AR		
Ranschgraben Schifferstadt, Germany	7.2	5.4	0.2 – 0.7 % AR	6.8 – 8.8 % AR after 100 d	6.8 – 8.8 % AR		

Fluxapyroxad (BAS 700 F) – irradiated system (13 hr light/ 11 hr dark)				vater immedi AR (day 43)	-	fter applicati	ion at d	ay 0; Maxi	mum (observed in
Water / sediment system	pH water phase	pH sed	t. °C	DT ₅₀ - DT ₉₀ whole sys.	St. (χ^2)	DT ₅₀ - DT ₉₀ water	St. (χ^2)	DT ₅₀ - DT ₉₀ sed	St. (χ^2)	Method of calculation
Berghauser Altrhein Speyer, Germany	7.3	7.4	22 – 26 light; 18 – 20 dark	145/ 482	1.1	3.4/ 55.9	3.9	NC	NC	SFO – whole system; DFOP - water
Ranschgraben Schifferstadt, Germany	7.2	5.4	22 – 26 light; 18 – 20 dark	116/387	0.9	7.0/ 55.6	3.5	NC	NC	SFO – whole system; DFOP - water
Geometric mean/r	nedian	1	-	-		-		-		-

NC = Not calculated due to insufficient decline phase

M700F001 - irradiated experiment	Max. in water 3.2 and 10.9 % AR after 43 d (Berghäuser Altrhein and Ranschgraben system; pyrazole label). Not observed in sediment.
M700F007 - irradiated experiment	Max. in water 7.5 % AR after 57 d (study termination) and 3.3 % AR after 43d in Berghäuser Altrhein and Ranschgraben systems, respectively. (Both with pyrazole label). Not observed in sediment.

Mineralization and non-extractable residues							
Water / sediment system - Irradiated	pH water phase	pH sed (CaCl 2)	Mineralization x % after 57 d. (end of the study).	Non-extracted residues in sed. Max x % after n d	Non-extractable residues in sed. Max x % after 57 d (end of the study)		
Berghauser Altrhein Speyer, Germany	7.3	7.4	0.2 – 2.5 % AR	12.5 – 19.7 % AR after 57 d	12.5 – 19.7 % AR		
Ranschgraben Schifferstadt, Germany	7.2	5.4	0.3 – 2.8 % AR	12.0 – 21.1 % AR after 57 d	12.0 – 21.1 % AR		

PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

Parent – Fluxapyroxad (BAS 700 F)	Version control no. of FOCUS calculator: Vers. 1.1
Parameters used in FOCUSsw step 1 and 2	Molecular weight (g/mol): 381.3
	Water solubility (mg/L): 3.8 at 20 °C
	K _{OC} (L/kg): 728 (arithmetic mean; n=7)
	DT_{50} soil (d): <i>151</i> days (Geometric mean of normalised field studies based on slow phase HS DT_{50} where appropriate.)
	DT ₅₀ water/sediment system (d): 1000 (default worst- case assumption based on FOCUS Kinetics guidance (FOCUS, 2006))
	DT_{50} water (d): 1000 (default worst-case assumption based on FOCUS Kinetics guidance (FOCUS, 2006))
	DT_{50} sediment (d): 1000 (default worst-case assumption based on FOCUS Kinetics guidance (FOCUS, 2006))
	Crop interception (%): average crop cover (50 %)
Parameters used in FOCUSsw step 3 (if performed)	Version control no.'s of FOCUS software: SWASH version 1.1, FOCUS-PRZM version 1.1.1, FOCUS-MACRO version 4.4.2, FOCUS-TOXSWA version 2.2.1.
	Vapour pressure: 10 ⁻¹⁰ Pa (20°C)
	Kom/Koc: 422/728
	1/n: 0.914 (Freundlich exponent general or for soil, susp. solids or sediment respectively)
Application rate	Crop: winter cereals; spring cereals
	Crop interception: 1 st application 50 %, 2 nd application 70 %
	Number of applications: 2
	Interval (d): 21
	Application rate(s): 2 x 125 g a.s./ha Application window: <u>Step 1 and Step 2</u> Winter cereals – North Europe – March-May South Europe – Oct-Feb
	Spring cereals – North Europe – June-Sept South Europe – March-May
	Step 3
	See Table B.8.107 (The United Kingdom, 2011a)

FOCUS STEP 1	Day after	PEC _{SW} (µg/L)		$PEC_{SED}(\mu g/kg)$		
Winter & Spring Cereals Scenario	overall maximum	Actual	TWA	Actual	TWA	
	0 h	44.59		307.85		
	24 h	43.42	44.00	316.12	311.99	
	2 d	43.39	43.71	315.90	314.00	
	4 d	43.33	43.53	315.47	314.84	
	7 d	43.24	43.43	314.81	314.97	
	14 d	43.03	43.28	313.29	314.51	
	21 d	42.83	43.17	311.77	313.85	
	28 d	42.62	43.05	310.26	313.14	
	42 d	42.21	42.84	307.27	311.68	

FOCUS STEP		$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	PEC _{SED} (µg/kg)	
2 Winter & Spring Cereals Scenario	Day after overall maximum	Actual	TWA	Actual	TWA	
Northern EU	0 h	5.18		36.24		
	24 h	4.98	5.08	36.22	36.23	
	2 d	4.97	5.03	36.19	36.22	
	4 d	4.97	5.00	36.14	36.19	
	7 d	4.96	4.98	36.07	36.15	
	14 d	4.93	4.96	35.89	36.07	
	21 d	4.91	4.95	35.72	35.98	
	28 d	4.89	4.94	35.54	35.89	
	42 d	4.84	4.91	35.20	35.72	
Southern EU	0 h	9.14		65.06		
	24 h	8.94	9.04	65.01	65.03	
	2 d	8.93	8.99	64.97	65.01	
	4 d	8.92	8.96	64.88	64.97	
	7 d	8.90	8.94	64.74	64.90	
	14 d	8.86	8.91	64.43	64.74	
	21 d	8.81	8.88	64.12	64.59	
	28 d	8.77	8.86	63.81	64.43	
	42 d	8.69	8.82	63.19	64.12	

FOCUS STEP	Water	$PEC_{SW max} (\mu g/L)$		
3 Winter cereals, single application Scenario	body	Tier A	Tier C	
D1	ditch	2.285	1.970	
D1	stream	1.534	1.342	
D2	ditch	1.744	1.338	
D2	stream	1.089	0.915	
D3	ditch	0.789	0.789	
D4	pond	0.294	0.223	
D4	stream	0.648	0.647	
D5	pond	0.142	0.108	
D5	stream	0.637	0.633	
D6	ditch	0.844	0.834	
R1	pond	0.078		
R1	stream	0.840		
R3	stream	0.852		
R4	stream	1.339		

FOCUS STEP	Water	PEC _{SW max} (µg/L)		
3 Winter cereals, twofold applications	body	Tier A	Tier C	
Scenario				
D1	ditch	3.846	2.786	
D1	stream	2.406	1.811	
D2	ditch	3.694	2.668	
D2	stream	2.306	1.665	
D3	ditch	0.691	0.691	
D4	pond	0.622	0.421	
D4	stream	0.939	0.653	
D5	pond	0.299	0.222	
D5	stream	0.572	0.566	
D6	ditch	0.965	0.879	
R1	pond	0.170		
R1	stream	1.192		
R3	stream	1.042		

FOCUS STEP	Water	$PEC_{SW max} (\mu g/L)$	
3 Winter cereals, twofold applications Scenario	body	Tier A	Tier C
R4	stream	1.997	

FOCUS STEP	Water	$PEC_{SW max} (\mu g/L)$		
3 Spring cereals, single application Scenario	body	Tier A	Tier C	
D1	ditch	1.579	1.443	
D1	stream	0.964	0.797	
D3	ditch	0.791	0.792	
D4	pond	0.269	0.189	
D4	stream	0.658	0.658	
D5	pond	0.090	0.107	
D5	stream	0.694	0.695	
R4	stream	1.216		

FOCUS STEP	Water	$PEC_{SW max} (\mu g/L)$		
3 Spring cereals, twofold application	body	Tier A	Tier C	
Scenario				
D1	ditch	2.523	2.530	
D1	stream	1.589	1.589	
D3	ditch	0.693	0.693	
D4	pond	0.461	0.399	
D4	stream	0.671	0.603	
D5	pond	0.202	0.241	
D5	stream	0.639	0.639	
R4	stream	2.078		
FOCUS STEP	Water	PEC _{SED max} (µg/kg)		

3	body	Tier A	Tier C
Winter cereals single application			
Scenario			
D1	ditch	17.579	14.185
D1	stream	9.801	7.912
D2	ditch	11.226	8.637
D2	stream	6.481	4.981
D3	ditch	0.326	0.327
D4	pond	2.449	1.897
D4	stream	0.882	0.672
D5	pond	1.606	1.254
D5	stream	0.310	0.236
D6	ditch	0.767	0.670
R1	pond	0.654	
R1	stream	0.350	
R3	stream	0.311	
R4	stream	0.757	

FOCUS STEP	Water	$PEC_{SED max} (\mu g/kg)$		
3 Winter cereals twofold application	body	Tier A	Tier C	
Scenario				
D1	ditch	33.619	24.690	
D1	stream	18.635	13.688	
D2	ditch	22.742	16.243	
D2	stream	13.099	9.324	
D3	ditch	0.383	0.384	
D4	pond	4.961	3.461	
D4	stream	1.805	1.235	
D5	pond	3.280	2.504	
D5	stream	0.642	0.479	
D6	ditch	1.475	1.381	
R1	pond	1.311		
R1	stream	0.696		
R3	stream	0.645		

FOCUS STEP	Water	$PEC_{SED max}(\mu g/kg)$	
3 Winter cereals twofold application Scenario	body	Tier A	Tier C
R4	stream	2.435	

FOCUS STEP	Water	$PEC_{SED max} (\mu g/kg)$		
3 Spring cereals single application Scenario	body	Tier A	Tier C	
D1	ditch	16.902	14.673	
D1	stream	9.149	7.927	
D3	ditch	0.399	0.400	
D4	pond	2.307	1.660	
D4	stream	0.763	0.533	
D5	pond	1.115	1.306	
D5	stream	0.200	0.240	
R4	stream	1.169		

FOCUS STEP	Water	$PEC_{SED max} (\mu g/kg)$		
3 Spring cereals twofold application Scenario	body	Tier A	Tier C	
D1	ditch	26.754	27.739	
D1	stream	14.392	15.001	
D3	ditch	0.497	0.497	
D4	pond	3.850	3.343	
D4	stream	1.286	1.104	
D5	pond	2.407	2.815	
D5	stream	0.448	0.534	
R4	stream	1.844		

Metabolite - M700F001	Molecular weight (g/mol): 176.1
Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 39990
	Soil or water metabolite: Soil and water
	Koc (L/kg): 2.6 (arithmetic mean of 7 soils)
	DT ₅₀ soil (d): 5.4 days (Geometric mean of normalized laboratory studies)
	DT ₅₀ water/sediment system (d): 1000 (Conservative assumptions according to FOCUS (2006))
	DT ₅₀ water (d): 1000 (Conservative assumptions according to FOCUS (2006))
	DT ₅₀ sediment (d): 1000 (Conservative assumptions according to FOCUS (2006))
	Crop interception (%): average crop cover (50 %)
	Maximum occurrence observed (% molar basis with respect to the parent)
	Water/ sediment: 10.9 (only detected in the water phase)
	Soil: 12.1 (Maximum from laboratory aerobic soil degradation studies.)
Application rate	Crop: winter cereals; spring cereals
	Number of applications: 2
	Interval (d): 21
	Application rate(s): 2 x 125 g a.s./ha
	Application window: Step 1 and Step 2
	Winter cereals –
	North Europe – March-May South Europe – Oct-Feb
	-
	Spring cereals – North Europe – June-Sept
	South Europe – March-May
Main routes of entry	Drainflow/ run-off

FOCUS STEP		$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
1 Winter & Spring Cereals Scenario	Day after overall maximum	Actual	Actual TWA	Actual	TWA
	0h	4.76		0.12	
	24h	4.75	4.75	0.12	0.12
	2d	4.75	4.75	0.12	0.12
	4d	4.74	4.75	0.12	0.12
	7d	4.73	4.74	0.12	0.12
	14d	4.71	4.73	0.12	0.12
	21d	4.69	4.72	0.12	0.12
	28d	4.66	4.71	0.12	0.12
	42d	4.62	4.69	0.12	0.12

FOCUS STEP		$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
2 Winter & Spring Cereals Scenario	Day after overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.25		0.01	
	24 h	0.25	0.25	0.01	0.01
	2 d	0.25	0.25	0.01	0.01
	4 d	0.25	0.25	0.01	0.01
	7 d	0.25	0.25	0.01	0.01
	14 d	0.25	0.25	0.01	0.01
	21 d	0.25	0.25	0.01	0.01
	28 d	0.24	0.25	0.01	0.01
	42 d	0.24	0.25	0.01	0.01
Southern EU	0 h	0.40		0.01	
	24 h	0.40	0.40	0.01	0.01
	2 d	0.40	0.40	0.01	0.01
	4 d	0.40	0.40	0.01	0.01
	7 d	0.40	0.40	0.01	0.01
	14 d	0.39	0.40	0.01	0.01
	21 d	0.39	0.39	0.01	0.01
	28 d	0.39	0.39	0.01	0.01
	42 d	0.39	0.39	0.01	0.01

Metabolite - M700F002	Molecular weight (g/mol): 162
Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 31580
n n n n n n n n n n n n n n n n n n n	Soil or water metabolite: Soil
	Koc (L/kg): 7.6 (arithmetic mean of 7 soils)
	DT_{50} soil (d): 25.9 days (Geometric mean of normalized field studies)
	DT ₅₀ water/sediment system (d): 1000 (Conservative assumptions according to FOCUS (2006))
	DT ₅₀ water (d): 1000 (Conservative assumptions according to FOCUS (2006))
	DT ₅₀ sediment (d): 1000 (Conservative assumptions according to FOCUS (2006))
	Crop interception (%): average crop cover (50 %)
	Maximum occurrence observed (% molar basis with respect to the parent)
	Water/ sediment: not observed. Default value of 0.01 % used in calculations
	Soil: 70.5 % (Max formation, plus remaining parent and M700F001 in soil as still increasing at study termination.)
Application rate	Crop: winter cereals; spring cereals
	Number of applications: 2
	Interval (d): 21
	Application rate(s): 2 x 125 g a.s./ha
	Application window: Step 1 and Step 2
	Winter cereals –
	North Europe – March-May
	South Europe – Oct-Feb
	Spring cereals – North Europe – June-Sept
	South Europe – March-May
Main routes of entry	Drainflow/ run-off

FOCUS STEP		$PEC_{SW}(\mu g/L)$	$PEC_{SW}(\mu g/L)$)
1 Winter & Spring Cereals Scenario	Day after overall maximum	Actual	TWA	Actual	TWA
	0h	24.71		1.88	
	24h	24.69	24.70	1.88	1.88
	2d	24.68	24.69	1.88	1.88
	4d	24.64	24.68	1.87	1.88
	7d	24.59	24.65	1.87	1.87
	14d	24.47	24.59	1.86	1.87
	21d	24.35	24.53	1.85	1.86
	28d	24.24	24.47	1.84	1.86
	42d	24.00	24.35	1.82	1.85

FOCUS STEP		$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
2 Winter & Spring Cereals Scenario	Day after overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	1.74		0.13	
	24 h	1.74	1.74	0.13	0.13
	2 d	1.74	1.74	0.13	0.13
	4 d	1.74	1.74	0.13	0.13
	7 d	1.73	1.74	0.13	0.13
	14 d	1.73	1.73	0.13	0.13
	21 d	1.72	1.73	0.13	0.13
	28 d	1.71	1.73	0.13	0.13
	42 d	1.69	1.72	0.13	0.13
Southern EU	0 h	3.49		0.26	
	24 h	3.48	3.48	0.26	0.26
	2 d	3.48	3.48	0.26	0.26
	4 d	3.48	3.48	0.26	0.26
	7 d	3.47	3.48	0.26	0.26
	14 d	3.45	3.47	0.26	0.26
	21 d	3.44	3.46	0.26	0.26
	28 d	3.42	3.45	0.26	0.26
	42 d	3.39	3.44	0.26	0.26

Metabolite - M700F007	Molecular weight (g/mol): 175.1
Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 39990 (Assumed value taken from M700F001 due to similarity of structures) (water solubility determined experimentally post-modelling was 1770 mg/L although it was not considered to influence the outcome of the SW modelling.)
	Soil or water metabolite: Water
	Koc (L/kg): 1 (default worst case value for PECsw calculation; substance not found in sediment)
	DT_{50} soil (d): 1 days (default value, substance not found in soil)
	DT ₅₀ water/sediment system (d): 1000 (Conservative assumptions according to FOCUS (2006))
	DT ₅₀ water (d): 1000 (Conservative assumptions according to FOCUS (2006))
	DT ₅₀ sediment (d): 1000 (Conservative assumptions according to FOCUS (2006))
	Crop interception (%): average crop cover (50 %)
	Maximum occurrence observed (% molar basis with respect to the parent)
	Water/ sediment: 17.7 % (Max. formation, plus remaining parent in water phase as concentration still increasing at study termination.)
	Soil: Not observed in soil studies. Default value of 0.01 % used in calculations.
Application rate	Crop: winter cereals; spring cereals
	Number of applications: 2
	Interval (d): 21
	Application rate(s): 2 x 125 g a.s./ha Application window: <u>Step 1 and Step 2</u> Winter cereals – North Europe – March-May South Europe – Oct-Feb
	Spring cereals – North Europe – June-Sept South Europe – March-May
Main routes of entry	Spray drift and subsequent formation in surface water body

FOCUS STEP		$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
1 Winter & Spring Cereals Scenario	Day after overall maximum	Actual	TWA	Actual	TWA
	Oh	0.19		0.00	
	24h	0.19	0.19	0.00	0.00
	2d	0.19	0.19	0.00	0.00
	4d	0.19	0.19	0.00	0.00
	7d	0.19	0.19	0.00	0.00
	14d	0.19	0.19	0.00	0.00
	21d	0.19	0.19	0.00	0.00
	28d	0.19	0.19	0.00	0.00
	42d	0.19	0.19	0.00	0.00

FOCUS STEP		PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
2 Winter & Spring Cereals Scenario	Day after overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.16		0.00	
	24 h	0.16	0.16	0.00	0.00
	2 d	0.16	0.16	0.00	0.00
	4 d	0.16	0.16	0.00	0.00
	7 d	0.16	0.16	0.00	0.00
	14 d	0.16	0.16	0.00	0.00
	21 d	0.16	0.16	0.00	0.00
	28 d	0.16	0.16	0.00	0.00
	42 d	0.16	0.16	0.00	0.00
Southern EU	0 h	0.16		0.00	
	24 h	0.16	0.16	0.00	0.00
	2 d	0.16	0.16	0.00	0.00
	4 d	0.16	0.16	0.00	0.00
	7 d	0.16	0.16	0.00	0.00
	14 d	0.16	0.16	0.00	0.00
	21 d	0.16	0.16	0.00	0.00
	28 d	0.16	0.16	0.00	0.00
	42 d	0.16	0.16	0.00	0.00

Accumulation PEC in sediment

Fluxapyroxad (BAS 700 F)

Accumulation PEC in sediment (PEC_{sed,plateau}) for fluxapyroxad (BAS 700 F) were calculated with equation based on the plateau concentration after multiyear use and the maximum PEC in sediment of the tiered approach at Step 3. For each tier at Step 3, concentrations only for the scenario showing the highest global maximum PEC in sediment were derived.

Calculation of $\ensuremath{\mathsf{PEC}_{\mathsf{sed},\mathsf{plateau}}}$

PEC sed, plateau =
$$\frac{PEC}{1 - e^{-k \cdot t}} \cdot e^{-k \cdot t}$$

PEC _{sed,plat}	eau Plateau concentration at steady state
	[µg/kg] [µg/kg]
PEC _{sed,max}	Highest global maximum concentration at
	Step 3, [µg/kg]
k	Degradation rate in sediment $(\ln(2)/DT_{50})$
t	Time interval between growing seasons (365
	days), [d]

PECsed, accumulation values of flux apyroxad (BAS 700 F) after multi-year use of the substance on winter and spring cereals

Crop	Crop Worst-case		PEC _{sed,plateau}	PEC _{sed,max}	$\begin{array}{l} PEC_{sed,accu,overall} \\ (= PEC_{sed,plateau} + PEC_{sed,max}) \end{array}$
	water body		[µg/kg]	[µg/kg]	[µg/kg]
		А	116.781	33.619	150.400
Winter	Winter	В	105.783	30.453	136.236
cereals D1, ditch	D1, ditch	С	85.764	24.690	110.454
		D	56.798	16.351	73.149
		А	92.934	26.754	119.688
Spring	D1 ditab	В	63.113	18.169	81.282
cereals	D1, ditch	С	96.356	27.739	124.095
		D	67.882	19.542	87.424

PEC (ground water) (Annex IIIA, point 9.2	2.1)				
Method of calculation and type of study (e.g.	For FOCUS gw mode	elling, values used -	-		
modelling, field leaching, lysimeter)	Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.				
	Model(s) used: FOCU PEARL v3.3.3, FOC Scenarios (list of nan Jokioinen, Kremsmün Sevilla, Thiva Crop: winter cereals	US MACRO v4.4.2 nes): Châteaudun, H	amburg,		
	Scenarios (list of nam Jokioinen, Kremsmün Crop: spring cereals		-		
	Geometric mean of n HS slow phase DT ₅₀		ies		
	HS fast phase DT_{50} 59.5 (selected to provide more precautionary assessment for metabolites) (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58).				
	K _{OC} : parent, Fluxapyroxad (BAS 700 F): arithmetic mean 728, $^{1}/_{n}$ = 0.914. Koc Metabolites:				
	M700F001: arithmetic mean 2.6, $^{1}/_{n}$ = 0.911 M700F002: arithmetic mean 7.6, $^{1}/_{n}$ = 0.964				
Application rate	Application rate: 125 No. of applications: 2 Interception: 1 st appli Application interval: Time of application (2 cation 50 %, 2 nd app 21 days	olication 70 %		
	Winter cereals:	a st	2 nd		
		1 st Application	Application		
	Châteaudun	1 st March (60)*	22 nd March (81)*		
	Hamburg	1 st March	22 nd March		
	Jokioinen	1 st April	22 nd April		
	Kremsmünster	1 st March	22 nd March		
	Okehampton	1 st March	22 nd March		
	Piacenza	1 st March	22 nd March		
	Porto	15 th February	8 th March		
	Sevilla	15 th February 15 th February	8 th March 8 th March		
	Thiva Spring cereals				
	Spring cerears				

	1 st Application	2 nd Application
Châteaudun	9 th April (99)*	30 th April (120)*
Hamburg	1 st May	22 nd May
Jokioinen	17 th June	8 th July
Kremsmünster	1 st May	22 nd May
Okehampton	1 st May	22 nd May
Porto	9 th April	30 th April

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m) Parent Slow phase DT50 151 days

р	Scenario	Parent	Metabolite (µg/L)	
PEA		(µg/L)	M700F001	M700F002
RL	Châteaudun	< 0.001	0.029	1.451
X	Hamburg	0.003	0.215	3.081
/Winter	Jokioinen	< 0.001	0.315	3.369
er	Kremsmünster	0.002	0.056	1.895
Ce	Okehampton	0.005	0.135	2.017
Cereals	Piacenza	0.011	0.082	0.374
sl	Porto	< 0.001	0.022	0.635
	Sevilla	< 0.001	0.020	0.677
	Thiva	< 0.001	0.032	1.048

P Ce	Scenario	Parent	Metabolite (µg/L)	
PEAR Cereals		(µg/L)	M700F001	M700F002
L	Châteaudun	< 0.001	0.031	1.468
IS/	Hamburg	0.0028	0.243	3.406
/Spring	Jokioinen	< 0.001	0.376	3.647
gi	Kremsmünster	0.0012	0.060	1.972
	Okehampton	0.0035	0.133	2.081
	Porto	< 0.001	0.030	0.764

Р	Scenario	Parent	Metabolite (µg/L)	
PELMO		(µg/L)	M700F001	M700F002
MO	Châteaudun	< 0.001	0.023	0.955
-	Hamburg	< 0.001	0.29	2.621
/Winter	Jokioinen	< 0.001	0.507	3.594
ter	Kremsmünster	< 0.001	0.05	1.606
Ce	Okehampton	0.001	0.152	1.938
Cereals	Piacenza	0.002	0.151	1.504
sl	Porto	< 0.001	0.052	0.691
	Sevilla	< 0.001	0.017	0.241
	Thiva	< 0.001	0.018	0.574

P Ce	Scenario	Parent	Metabolite (µg/L)	
PELM		$(\mu g/L)$	M700F001	M700F002
s	Châteaudun	< 0.001	0.011	0.722
S/ S	Hamburg	< 0.001	0.280	2.777
/Spring	Jokioinen	< 0.001	0.406	3.701
gu	Kremsmünster	< 0.001	0.030	1.533
	Okehampton	< 0.001	0.099	1.925
	Porto	< 0.001	0.022	0.731

MACRO	Scenario	Parent	Metabolite (µg/L)	
		$(\mu g/L)$	M700F001	M700F002
Winter Cereals	Châteaudun	0.001	0.048	1.342
Spring Cereals	Châteaudun	0.002	0.055	1.280

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m) Parent Fast phase DT50 59.5 days

р	Scenario	Parent	Metabolite (µg/L)	
PEARI		(µg/L)	M700F001	M700F002
RL	Châteaudun	< 0.001	0.019	1.374
	Hamburg	< 0.001	0.162	3.252
/Winter	Jokioinen	< 0.001	0.297	4.629
er	Kremsmünster	< 0.001	0.046	2.025
Ce	Okehampton	< 0.001	0.097	2.173
Cereals	Piacenza	< 0.001	0.040	1.162
S	Porto	< 0.001	0.014	0.50
	Sevilla	< 0.001	0.012	0.449
	Thiva	< 0.001	0.017	0.825

P Ce	Scenario	Parent	Metabolite (µg/L)	
PEARI Cereals		(µg/L)	M700F001	M700F002
RL	Châteaudun	< 0.001	0.021	1.447
/Spring	Hamburg	< 0.001	0.211	4.025
) Drir	Jokioinen	< 0.001	0.439	4.857
91	Kremsmünster	< 0.001	0.056	2.255
	Okehampton	< 0.001	0.115	2.250
	Porto	< 0.001	0.018	0.573
P Ce	Scenario	Parent	Metabolite (µg/L)	
PELMO Cereals		(µg/L)	M700F001	M700F002
s s	Châteaudun	< 0.001	0.014	1.059
-	Hamburg	< 0.001	0.182	3.158
/Winter	Jokioinen	< 0.001	0.381	5.031
ter	Kremsmünster	< 0.001	0.031	2.106
	Okehampton	< 0.001	0.108	2.251
	Piacenza	< 0.001	0.057	1.185

Porto	< 0.001	0.022	0.529
Sevilla	< 0.001	0.006	0.167
Thiva	< 0.001	0.007	0.366

P Ce	Scenario	Parent	Metabolite (µg/L)	
PELM ereals		$(\mu g/L)$	M700F001	M700F002
s. SOM	Châteaudun	< 0.001	0.007	0.767
S/ e	Hamburg	< 0.001	0.180	3.592
/Spring	Jokioinen	< 0.001	0.425	4.637
ng	Kremsmünster	< 0.001	0.022	2.090
	Okehampton	< 0.001	0.027	0.869
	Porto	< 0.001	0.012	0.594

MACRO	Scenario	Parent	Metabolite (µg/L)	
		$(\mu g/L)$	M700F001	M700F002
Winter Cereals	Châteaudun	< 0.001	0.024	1.11
Spring Cereals	Châteaudun	< 0.001	0.030	1.10

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air ‡	Not studied - no data requested
Quantum yield of direct phototransformation	Not studied - no data requested
Photochemical oxidative degradation in air ‡	DT_{50} of 0.69 days derived by the Atkinson model (version 1.92). OH (12 h) concentration assumed = 1.5 x 10^6 radicals cm ⁻³
Volatilisation ‡	Not studied - no data requested
	Not studied - no data requested
Metabolites	None

PEC (air)

Method of calculation

PEC_(a)

Maximum concentration

Residues requiring further assessment

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure. Expert judgement, based on vapour pressure, water solubility and dimensionless Henry's Law Constant.

Negligible

Soil:	Fluxapyroxad (BAS 700 F) and the metabolites M700F001 and
M700F002	
Surface water:	Fluxapyroxad (BAS 700 F) and the metabolites M700F001, M700F002 and M700F007
Sediment:	Fluxapyroxad (BAS 700 F)
Ground water:	Fluxapyroxad (BAS 700 F) and the metabolites M700F001 and M700F002
Air:	Fluxapyroxad (BAS 700 F)

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)	No data submitted – none required.
Surface water (indicate location and type of study)	No data submitted – none required.
Ground water (indicate location and type of study)	No data submitted – none required.
Air (indicate location and type of study)	No data submitted – none required.

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

Candidate for R53

Ecotoxicology

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species	Test substance	Time scale	End point	End point	
			(mg/kg bw/(day))	(mg/kg feed)	
Birds ‡					
Colinus virginianus	a.s.	Acute LD ₅₀	>2000	n/a	
Anas platyrhynchos	a.s.	Acute LD ₅₀	>2000	n/a	
Colinus virginianus	a.s.	Short-term LC ₅₀	> 912.00	>5000	
Anas platyrhynchos	a.s.	Short-term LC ₅₀	>1716	> 5000	
Colinus virginianus	a.s.	Long-term NOEC	74.6	1000	
a.s. a.s.		Long-term NOEC	33.6	300	
Mammals ‡	·				
Rat	Fluxapyroxad	Acute LD ₅₀	>2000	NA	
	(BAS 700 F)				
Rat	'BAS 700 00F'	Acute LD ₅₀	>2000	NA	
Rat	M700F001	Acute LD ₅₀	>2000	NA	
Rat	M700F002	Acute LD ₅₀	>2000	NA	
Rat	M700F007	Acute LD ₅₀	> 500	NA	
Rat	Fluxapyroxad (BAS 700 F)	Two generation study NOAEL	10	Dietary dose adjusted weekly	
Rabbit	Fluxapyroxad (BAS 700 F)	Teratology study NOAEL	25	NA	
Rabbit	M700F001	Teratology Study NOAEL	250	NA	
Rabbit	M700F002	Teratology study NOAEL	300	NA	

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Crop and application rate: Two applications to cereals at 0.125 kg a.s./ha at growth stages BBCH 25 to 69, with 21 day spray interval.

Indicator species/Category Time scale ETE/DDD TER Annex VI Trigger							
Tier 1 (Birds)							
Large herbivorous bird	Acute	9.02	222	10			

Indicator species/Category	Time scale	ETE/DDD	TER	Annex VI Trigger
Insectivorous bird		6.76	296	10
Large herbivorous bird		5.16	177	10
Insectivorous bird	Short-term	3.77	242	10
Large herbivorous bird		2.73	12.3	5
Insectivorous bird	Long-term	3.77	8.9	5
Higher tier refinement (Birds)			1	
	Acute			10
	Short-term			10
	Long-term			5
Avian risk assessment for co	nsumption of cont	taminated wate	er (spray-conta	aminated water droplet)*
Large herbivorous bird		3.42	585	10
Insectivorous bird	Acute	22.49	89	10
Avian risk assessment for co	nsumption of cont	taminated wate	er (spray-conta	aminated surface water)*
Large herbivorous bird	Acute	0.0018	1 111 111	10
Insectivorous bird	-	0.012	166 667	10
Large herbivorous bird		0.0018	506 667	10
Insectivorous bird	Short-term	0.012	76 000	10
Large herbivorous bird	Long-term	0.0018	18 667	5
Insectivorous bird		0.012	2800	5
Secondary poisoning				
Vermivore	Long-term	0.1904	177	5
Piscivore	Long-term	0.366	100	5
Acute and reproductive screen	-			
Small herbivorous mammal	Acute	17.8	112	10
Small herbivorous mammal	Reproductive	4.48	2.23	5
Tier I reproductive risk assessr	1		2.20	5
Cereals BBCH >20 Common	Reproductive	0.15	66.2	5
shrew (Sorex araneus)		1.70	5.0	
Cereals BBCH >40 Common vole (<i>Microtus arvalis</i>)	Reproductive	1.73	5.8	5
Cereals BBCH >10-29 Wood	Reproductive	0.62	16.1	5
mouse (Apodemus sylvaticus)	Damma 1. di	0.21		5
Cereals BBCH>30-39 Wood mouse (<i>Apodemus sylvaticus</i>)	Reproductive	0.31	32.3	5
Cereals BBCH>40 Wood mouse (Apodemus sylvaticus)	Reproductive	0.18	54.7	5
Mammalian risk assessment droplet)*	for consumption of	of contaminate	d water (spray	y-contaminated water
Small herbivorous mammal	Acute	0.06	>33333	10

Indicator species/Category	Time scale	ETE/DDD	TER	Annex VI Trigger
Small insectivorous mammal		0.03	>66667	10
Mammalian risk assessment : water)*	for consumption	of contaminate	d water (spray	-contaminated surface
Small herbivorous mammal		0.0064	312 500	10
Small insectivorous mammal	Acute	0.007	285 714	10
Mammalian risk assessment	for consumption	of contaminate	d water (meta	bolite M700F700)
Small herbivorous mammal	A create	12.0	42	10
Small insectivorous mammal	Acute	13.33	38	10
Secondary poisoning				
Vermivore	Danna du ativa	0.24	42	5
Piscivore	Reproductive	0.21	48	5

¹ Risk assessment conducted using the EFSA guidance on birds and mammals (EFSA, 2009). Unless stated otherwise, all values relate to the active substance.

* Not necessary for the use on cereals

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group	Test substance	Time-scale	End point	Toxicity ¹
		(Test type)		(mg/L)
Laboratory tests ‡				
Fish				
Oncorhynchus mykiss	a.s.	96 hr (static)	Mortality, LC ₅₀	0.546 nm
Lepomis macrochiris	a.s.	96 hr (static)	Mortality, LC ₅₀	1.15 mm
Pimephales promelas	a.s.	96 hr (static)	Mortality, LC ₅₀	0.466 mm
Cyprinus carpio	a.s.	96 hr (semi- static)	Mortality, LC ₅₀	0.29 mm
Cyprinodon variegatus	a.s.	96 hr (static)	Mortality, LC ₅₀	1.3 mm
Pimephales promelas	a.s.	33d ELS (flow- through)	Growth NOEC	0.0359 mm
Oncorhynchus mykiss	M700F001	96 hr (static)	Mortality, LC ₅₀	>100 nm
Oncorhynchus mykiss	M700F002	96 hr (static)	Mortality, LC ₅₀	>100 nm
Oncorhynchus mykiss	M700F007	96 hr (static)	Mortality, LC ₅₀	>100 nm
Oncorhynchus mykiss	'BAS 700 00F'	96 hr (static)	Mortality, LC ₅₀	7.1 (0.44) nm
Aquatic invertebrates				
Daphnia magna	a.s.	48 h (static)	Mortality, EC ₅₀	6.78 mm
Americamysis bahia	a.s.	96 h (static)	Mortality, EC ₅₀	3.6 mm

Group	Test substance	Time-scale	End point	Toxicity ¹
		(Test type)		(mg/L)
Crassostrea virginica	a.s.	96 h (flow- through)	Mortality, EC ₅₀	1.1 mm
Daphnia magna	a.s.	21 d (static)	Reproduction, NOEC	0.5 nm
Daphnia magna	M700F001	48 h (static)	Mortality, EC ₅₀	>100 nm
Daphnia magna	M700F002	48 h (static)	Mortality, EC ₅₀	>100 nm
Daphnia magna	M700F007	48 h (static)	Mortality, EC ₅₀	>100 nm
Daphnia magna	'BAS 700 00F'	48 h (static)	Mortality, EC ₅₀	19.8 (1.24) nm
Sediment dwelling organis	sms	-		
Chironomus riparius	a.s.	28 d (static)	NOEC	¹ 75.9 mm initial
Algae				
Pseudokirchnella	a.s.	72 h (static)	Growth rate: E _r C ₅₀	0.7 nm
subcapitata			Yield: E _y C ₅₀	0.4 nm
Anabaena flos-aquae	a.s.	72 h (static)	Growth rate: E _r C ₅₀	2.61 mm
			Yield: E _y C ₅₀	1.38 mm
Navicula pelliculosa	a.s.	72 h (static)	Growth rate: ErC50	>3.42 mm
			Yield: E _y C ₅₀	2.31 mm
Pseudokirchnella	M700F001	72 h (static)	Growth rate: ErC50	36.31 nm
subcapitata			Yield: E _y C ₅₀	26.42 nm
Pseudokirchnella	M700F002	72 h (static)	Growth rate: E _r C ₅₀	26.52 nm
subcapitata			Yield: E _y C ₅₀	22.44 nm
Pseudokirchnella	M700F007	72 h (static)	Growth rate: E _r C ₅₀	>100 nm
subcapitata			Yield: E _y C ₅₀	>100 nm
Pseudokirchnella	'BAS 700 00F'	72 h (static)	Growth rate: E _r C ₅₀	42.4 (2.65) nm
subcapitata			Yield: E _y C ₅₀	5.4 (0.34) nm
Higher plant				
Lemna gibba	a.s.	7-day (static)	Biomass $E_r C_{50}$	>3.43 mm
			Frond E _y C ₅₀	2.19 mm
Microcosm or mesocosm t	tests			
Indicate if not required				

¹ nominal ($_{nom}$) or mean measured concentrations ($_{mm}$). In the case of preparations, concentrations in brackets are presented as units of a.s.

Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2)

FOCUS Step1

A risk assessment for the formulation has been removed as the toxicity of the active substance and the formulation are in the same order of magnitude.

Crop and application rate: Two applications to cereals at 0.125 kg a.s./ha at growth stages BBCH 25 to 69, with 21 day spray interval.

TERs for aquatic organisms at FOCUS Step 1

Test substance	Organism	Toxicity end point (mg/L)	Time scale	PEC _{sw,max} [μg L ⁻¹]	TER	Annex VI Trigger ¹
a.s.	Cyprinus carpio	0.29	Acute	44.586	6.5	100
a.s.	Pimephales promelas	0.0359	Chronic	44.586	0.805	10
a.s.	Crassostrea virginica	1.1	Acute	44.586	24.7	100
a.s.	Daphnia magna	0.5	Chronic	44.586	11	10
a.s.	Pseudokirchnella subcapitata	0.4	Chronic	44.586	9.0	10
a.s.	Lemna gibba	2.19	Chronic	44.586	49	10
a.s.	Chironomus riparius	75.9	Chronic	307.8 ²	246	10
M700F001	Oncorhynchus mykiss	>100	Acute	4.76	>21008	100
M700F001	Daphnia magna	>100	Acute	4.76	>21008	100
M700F001	Pseudokirchnella subcapitata	26.42	Chronic	4.76	5550	10
M700F002	Oncorhynchus mykiss	>100	Acute	24.71	>4047	100
M700F002	Daphnia magna	>100	Acute	24.71	>4047	100
M700F002	Pseudokirchnella subcapitata	22.44	Chronic	24.71	908	10
M700F007	Oncorhynchus mykiss	>100	Acute	0.19	>52631 6	100
M700F007	Daphnia magna	>100	Acute	0.19	>52631 6	100
M700F007	Pseudokirchnella subcapitata	>100	Chronic	0.19	>52631 6	10

¹If the Annex VI Trigger value has been adjusted during the risk assessment of the active substance, it should appear in this column. E.g. if it is agreed during the risk assessment of mesocosm, that a trigger value of 5 is required, it should appear as a minimum requirement to MS in relation to product approval.

² PECsed were used.

FOCUS Step 2

FOCUS Step 2 calculations were conducted for each compound. The calculations were based on the two applications of 0.125 g a.s./ha to cereals, with an average crop cover of 50 %. Crop application at step 2 included applications made in the winter and spring.

Test substance	N/S	Organism	Toxicity end point (mg/L)	Time scale	PEC _{sw,ma} ^x [µg L ⁻¹]	TER	Annex VI Trigger
a.s.	N	Cyprinus carpio	0.29	Acute	5.182	56.0	100
a.s.	S	Cyprinus carpio	0.29	Acute	9.143	31.7	100
a.s.	N	Crassostrea virginica	1.1	Acute	5.182	212	100
a.s.	S	Crassostrea virginica	1.1	Acute	9.143	120	100
a.s.	N	Pseudokirchnella subcapitata	0.4	Chronic	5.182	77.2	10
a.s.	S	Pseudokirchnella subcapitata	0.4	Chronic	9.143	43.7	10
a.s.	N	Pimephales promelas	0.0359	Chronic	5.182	6.9	10
a.s.	S	Pimephales promelas	0.0359	Chronic	9.143	3.9	10

TERs for aquatic organisms at FOCUS Step 2

Refined aquatic risk assessment using higher tier FOCUS modelling

FOCUS Step 3

Surface water modelling of fluxapyroxad (BAS 700 F) was conducted using the FOCUS surface water models and scenarios. The Step 3 simulations were conducted for all relevant FOCUS surface water scenarios using the MACRO or PRZM models to simulate potential surface water exposure and TOXSWA to simulate the fate and behaviour of the compound in the water body.

Test substanc e	Scenario	Water body type	Test organism	Time scale	Toxicity end point (mg/L)	PEC _{sw} Global max [µg L ⁻¹]	TER	Annex VI trigger
a.s.	D1	ditch	Cyprinus carpio	Acute	0.29	3.846	75.4	100
a.s.		stream	Cyprinus carpio	Acute	0.29	2.406	120.5	100
a.s.	D2	ditch	Cyprinus carpio	Acute	0.29	3.694	78.5	100
a.s.		stream	Cyprinus carpio	Acute	0.29	2.306	125.6	100
a.s.	D3	ditch	Cyprinus carpio	Acute	0.29	0.691	419.7	100
a.s.	D4	pond	Cyprinus carpio	Acute	0.29	0.622	466.2	100
a.s.		stream	Cyprinus carpio	Acute	0.29	0.939	308.8	100
a.s.	D5	pond	Cyprinus carpio	Acute	0.29	0.299	969.9	100

TERs for aquatic organisms at FOCUS Step 3 (tier A) application to winter cereals

Test substanc e	Scenario	Water body type	Test organism	Time scale	Toxicity end point	PEC _{sw} Global max	TER	Annex VI trigger
-					(mg/L)	[µg L ⁻¹]		
a.s.		stream	Cyprinus carpio	Acute	0.29	0.572	507	100
a.s.	D6	ditch	Cyprinus carpio	Acute	0.29	0.965	300.5	100
a.s.	R1	pond	Cyprinus carpio	Acute	0.29	0.17	1705.9	100
a.s.		stream	Cyprinus carpio	Acute	0.29	1.192	243.3	100
a.s.	R3	stream	Cyprinus carpio	Acute	0.29	1.042	278.3	100
a.s.	R4	stream	Cyprinus carpio	Acute	0.29	1.997	145	100
a.s.	D1	ditch	Pimephales promelas	Chronic	0.0359	3.846	9.3	10
a.s.		stream	Pimephales promelas	Chronic	0.0359	2.406	14.9	10
a.s.	D2	ditch	Pimephales promelas	Chronic	0.0359	3.694	9.7	10
a.s.		stream	Pimephales promelas	Chronic	0.0359	2.306	15.6	10
a.s.	D3	ditch	Pimephales promelas	Chronic	0.0359	0.691	52.0	10
a.s.	D4	pond	Pimephales promelas	Chronic	0.0359	0.622	57.7	10
a.s.		stream	Pimephales promelas	Chronic	0.0359	0.939	38.2	10
a.s.	D5	pond	Pimephales promelas	Chronic	0.0359	0.299	120.1	10
a.s.		stream	Pimephales promelas	Chronic	0.0359	0.572	62.8	10
a.s.	D6	ditch	Pimephales promelas	Chronic	0.0359	0.965	37.2	10
a.s.	R1	pond	Pimephales promelas	Chronic	0.0359	0.17	211.2	10
a.s.		stream	Pimephales promelas	Chronic	0.0359	1.192	30.1	10
a.s.	R3	stream	Pimephales promelas	Chronic	0.0359	1.042	34.5	10
a.s.	R4	stream	Pimephales promelas	Chronic	0.0359	1.997	18.0	10

TERs for aquatic organisms at FOCUS Step 3 (tier A) application to spring cereals

Test substanc e	Scenario	Water body type	Test organism	Time scale	Toxicity end point [mg/L]	PEC _{sw} Global max [µg L ⁻¹]	TER	Annex VI trigger
a.s.	D1	ditch	Cyprinus carpio	Acute	0.29	2.523	114.9	100
a.s.		stream	Cyprinus	Acute	0.29	1.589	182.5	100

Test substanc e	Scenario	Water body type	Test organism	Time scale	Toxicity end point [mg/L]	PEC _{sw} Global max [µg L ⁻¹]	TER	Annex VI trigger
						[µg L]		
			carpio			0.600	410.5	
a.s.	D3	ditch	Cyprinus carpio	Acute	0.29	0.693	418.5	100
a.s.	D4	pond	Cyprinus carpio	Acute	0.29	0.461	629.1	100
a.s.		stream	Cyprinus carpio	Acute	0.29	0.671	432.2	100
a.s.	D5	pond	Cyprinus carpio	Acute	0.29	0.202	1435.6	100
a.s.		Stream	Cyprinus carpio	Acute	0.29	0.639	453.8	100
a.s.	R4	Stream	Cyprinus carpio	Acute	0.29	2.078	139.6	100
a.s.	D1	ditch	Pimephales promelas	Chronic	0.0359	2.523	14.2	10
a.s.		stream	Pimephales promelas	Chronic	0.0359	1.589	22.6	10
a.s.	D3	ditch	Pimephales promelas	Chronic	0.0359	0.693	51.8	10
a.s.	D4	pond	Pimephales promelas	Chronic	0.0359	0.461	77.9	10
a.s.		stream	Pimephales promelas	Chronic	0.0359	0.671	53.5	10
a.s.	D5	pond	Pimephales promelas	Chronic	0.0359	0.202	177.7	10
a.s.		Stream	Pimephales promelas	Chronic	0.0359	0.639	56.2	10
a.s.	R4	Stream	Pimephales promelas	Chronic	0.0359	2.078	17.3	10

TERs for aquatic organisms at FOCUS Step 3 application to winter cereals using th	ne refined PECsw from
tier C ¹ .	

Test substance	Scenario	Water body type	Test organism	Time scale	Toxicity end point	PEC _{sw} Global max	TER	Annex VI trigger
					(mg/L)	[µg L ⁻ 1]		
a.s.	D1	ditch	Cyprinus carpio	Acute	0.29	2.786	104	100
a.s.	D2	ditch	Cyprinus carpio	Acute	0.29	2.668	109	100
a.s.	D1	ditch	Pimephales promelas	Chronic	0.0359	2.786	12.9	10
a.s.	D2	ditch	Pimephales promelas	Chronic	0.0359	2.668	13.5	10

¹ Simulations with refined interception values in MACRO according to FOCUS recommendations

Bioconcentration						
	Fluxapyroxad M700		M700F00	M700F00		
	(BAS 700 F)	1	2	7		
logP _{OW}	3.11	< 0.39	< 0.39	< 0.3		
Bioconcentration factor (BCF) ¹	36/37	NA	NA	NA		
Annex VI Trigger for the bioconcentration factor	1000	5	5	5		
Clearance time (days) (CT ₅₀)	0.73	NA	NA	NA		
(CT ₉₀)	0.84	NA	NA	NA		
Level and nature of residues (%) in organisms after the 14 day depuration phase	0.011% radioactivity remaining after 16 days	NA	NA	NA		

¹ only required if log $P_{O/W} > 3$.

NA: not applicable

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Test substance	Acute oral toxicity (LD ₅₀)	Acute contact toxicity (LD ₅₀)	
a.s. ‡	> 110.9 (µg a.s./bee)	> 100 (µg a.s./bee)	
'BAS 700 00 F'	> 2721 (µg product/bee)	448 (µg product/bee)	
Field or semi-field tests	No effect on foraging activity, mean brood termination rate or the brood compensation index compared with the control at 2.0 L product/ha.		

Hazard quotients for honey bees (Annex IIIA, point 10.4)

Crop and application rate: Two applications to cereals at 0.125 kg a.s./ha at growth stages BBCH 25 to 69, with 21 day spray interval.

Test substance	Route	Hazard quotient	Annex VI
			Trigger
a.s.	Contact	< 1.25	50
a.s.	Oral	< 1.13	50
'BAS 700 00 F'	Contact	4.64	50
'BAS 700 00 F'	Oral	< 0.764	50

Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Laboratory tests with standard sensitive species

Species	Test	End point	LR ₅₀ (L product/ha)
	Substance		
Typhlodromus pyri ‡	'BAS 700 00 F'	Mortality	0.128
Aphidius rhopalosiphi ‡	'BAS 700 00 F'	Mortality	4.70

Crop and application rate: Two applications to cereals at 0.125 kg a.s./ha at growth stages BBCH 25 to 69, with 21 day spray interval.

Test substance	Species	Effect (LR ₅₀ g/ha)	HQ in-field	HQ off-field (at 1 m)	Trigger
'BAS 700 00 F'	Typhlodromus pyri	0.128	26.6	0.632	2
'BAS 700 00 F'	Aphidius rhopalosiphi	4.70	0.723	0.0172	2

Further laboratory and extended laboratory studies ‡

Species	Life stage	Test substance, substrate and duration	Dose (L product/ ha)	End point (L product/ha)	% effect on fecundity	Trigger value
A. rhopalosiphi	Adult	'BAS 700 00 F'	6.0	$LR_{50} > 6.0$	29.4 % reduction at 6.0 L	50 %
T. pyri	Protonymph	'BAS 700 00 F'	2.0	$LR_{50} = 1.62$	53.9 % reduction at 2.0 L	50 %
T. pyri ¹	Protonymph	'BAS 700 00 F'	4.0	$LR_{50} > 4.0^+$	No effects at 4.0 L	50 %
C. carnea	Larval	'BAS 700 00 F'	6.0	$LR_{50} > 6.0$	No effects at 6.0 L	50 %

⁺ Initial residues

¹ this study should be used in the risk assessment.

Field or semi-field tests

Not required.

Effects on earthworms, other soil macro-organisms and soil micro-organisms (Annex IIA points 8.4 and 8.5. Annex IIIA, points, 10.6 and 10.7)

Test organism	Test substance	Time scale	End point
Earthworms			
	a.s. ‡	Acute	$LC_{50} > 1000 \text{ mg a.s./kg d.w.soil}$
	'BAS 700 00 F'	Acute	$LC_{50} = 17.22 \text{ mg a.s./kg dry soil}$
	'BAS 700 00 F'	Chronic	NOEC (56 d) = 21.3 mg a.s./kg dry soil
	M700F001	Acute	LC ₅₀ > 1000 mg M700F001/kg dry soil
	M700F001	Chronic	NOEC (56 d) = 5.33 mg M700F001/ kg dry soil
	M700F002	Acute	$LC_{50} > 1000 \text{ mg M700F002/kg}$ dry soil

Test organism	Test substance	Time scale	End point
	M700F002	Chronic	NOEC (56 d) = 2.56 mg M700F002/ kg dry soil
Other soil macro-organis	ms		
Soil mite			
	'BAS 700 00 F'	Chronic	NOEC = 500 mg 'BAS 700 00 F'/kg dry soil
			NOEC = 29.64 mg a.s./kg dry soil*
Collembola			
	M700F002	Chronic	NOEC = 1000 mg M700F002/kg dry soil
	'BAS 700 00 F'	Chronic	NOEC (28 d) = 50.0 mg 'BAS 700 00 F'/kg dry soil
			NOEC = 2.99 mg a.s./kg dry soil ⁺
Organic matter breakdow	vn		
	'BAS 701 00 F'*	Field study	Effects below 10 % after 12 months exposure to total application rate of 5 L product/ha.
			Effects between 10-25 % after 12 months exposure to total application rates of 8 and 10 L product/ha.
Soil micro-organisms			
Nitrogen mineralisation	a.s. ‡	28 d	< 25 % effect at 0.40 and 2.01 mg a.s./kg dry soil after 28 d
	M700F001	28 d	< 25 % effect at 0.037 and 0.37 mg metabolite/kg dry soil after 28 d
	M700F002	28 d	< 25 % effect at 0.1, 0.7 and 1.0 mg metabolite/kg dry soil after 28 d
	'BAS 700 00 F'	28 d	< 25 % effect at 5.54 and 27.71 mg formulation/kg dry soil after 28 d
Carbon mineralisation	a.s. ‡	28 d	< 25 % effect at 0.40 and 2.01 mg a.s./kg dry soil after 28 d
	M700F001	28 d	< 25 % effect at 0.037 and 0.37 mg metabolite/kg dry soil after 28 d
	M700F002	28 d	<pre>< 25 % effect at 0.1, 0.7 and 1.0 mg metabolite/kg dry soil after</pre>
	'BAS 700 00 F'	28 d	<pre></pre>
Field study	'BAS 701 00 F'*	Field test	No statistically significant effects

Test organism	Test substance	Time scale	End point
			on earthworm abundance or biomass up to a total application rate of 10 L product/ha compared to the control.

* 'BAS 701 00 F' is a formulation containing 62.5 g/L (nominal) BAS 700 F and 62.5 g/L (nominal) epoxiconazole. ⁺ Endpoint calculated by RMS.

Toxicity/exposure ratios for soil organisms

Crop and application rate: Two applications to cereals at 0.125 kg a.s./ha at growth stages BBCH 25 to 69, with 21 day spray interval.

Test organism	Test substance	Time scale	Soil PEC*	TER	Trigger
Earthworms				1	
	a.s. ‡	Acute	0.1882 mg a.s./kg	> 5313	10
	'BAS 700 00 F'	Acute	0.1882 mg a.s./kg	91.50	10
	'BAS 700 00 F'	Chronic	0.1882 mg a.s./kg	113.2	5
	M700F001	Acute	0.0075 ¹ mg M700F001/kg dry soil	(>142857)	10
	M700F001	Chronic	0.0075 ¹ mg M700F001/kg dry soil.	706	5
	M700F002	Acute	0.056 ² mg M700F002/kg dry soil	> 17857	10
	M700F002	Chronic	0.056 ² mg M700F002/kg dry soil	45.71	5
Other soil macro-org	ganisms				
Soil mite	'BAS 700 00 F'	Chronic	0.1882 mg a.s./kg dry soil	157.49	5
Collembola	M700F002	Chronic	0.056 mg M700F002/k g dry soil	17857	5
	'BAS 700 00 F'	Chronic	0.1882 mg a.s./kg dry soil	15.89	5

* Plateau PEC plus one season's application.

¹ Initial PECs were used.

² following 13 years of parent and correction for molecular mass and maximum occurrence.

Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8)

Preliminary screening data

Not required for herbicides as ER₅₀ tests should be provided

Most sensitive species	Test substance	ER ₅₀ (L formulation/ha) vegetative vigour	ER ₅₀ (L formulation/ha) emergence	Exposure [*] (g/ha)	TER	Trigger
NA^+	'BAS 700 00 F'	> 2.0	-	0.0554	> 36.1	5
NA^+	'BAS 700 00 F'	-	> 2.0	0.0554	> 36.1	5

* Based on Ganzelmeier drift data

⁺ Endpoints were the same for all species tested.

NA: not applicable

Additional studies (e.g. semi-field or field studies)

-

Effects on biological methods for sewage treatment (Annex IIA 8.7)

Test type/organism	End point
Activated sludge	3 hour EC ₅₀ > 1000 mg a.s./L
Pseudomonas sp	-

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	Fluxapyroxad (BAS 700 F).
water	Fluxapyroxad (BAS 700 F).
sediment	Fluxapyroxad (BAS 700 F).
groundwater	Fluxapyroxad (BAS 700 F)

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

Active substance

RMS/peer review proposal

R50; R53 (Regulation 1272/2008: H410; H411)

RMS/peer review proposal

R51; R53 (Regulation 1272/2008: H411)

Preparation

APPENDIX B – USED COMPOUND CODE(S)

Code/Trivial name	Chemical name*	Structural formula*
M700F001	3-(difluoromethyl)-1-methyl- 1 <i>H</i> -pyrazole-4-carboxylic acid	F N H ₃ C
M700F002	3-(difluoromethyl)-1 <i>H</i> - pyrazole-4-carboxylic acid	F N H H
M700F003	3',4',5'-trifluorobiphenyl-2- amine	H ₂ N F F F
M700F007	3-(difluoromethyl)-1-methyl- 1 <i>H</i> -pyrazole-4-carboxamide	F N H ₃ C
M700F008	3-(difluoromethyl)- <i>N</i> -(3',4',5'- trifluorobiphenyl-2-yl)-1 <i>H</i> - pyrazole-4-carboxamide	
M700F048	3-(difluoromethyl)-1-(b-D- glucopyranosyloxy)- <i>N</i> - (3',4',5'-trifluorobiphenyl-2- yl)-1 <i>H</i> -pyrazole-4- carboxamide	HO HO HO HO OH F F F

* ACD/ChemSketch, Advanced Chemistry Development, Inc., ACD/Labs Release: 12.00 Product version: 12.00 (Build 29305, 25 Nov 2008).

ABBREVIATIONS

1/n	slope of Freundlich isotherm
λ	wavelength
3	decadic molar extinction coefficient
°C	degree Celsius (centigrade)
μg	microgram
μm	micrometer (micron)
a.s.	active substance
AChE	acetylcholinesterase
ADE	actual dermal exposure
ADI	acceptable daily intake
AF	assessment factor
AOEL	acceptable operator exposure level
AP	alkaline phosphatase
AR	applied radioactivity
ARfD	acute reference dose
AST	aspartate aminotransferase (SGOT)
AV	avoidance factor
BCF	bioconcentration factor
BUN	blood urea nitrogen
bw	body weight
CAS	Chemical Abstracts Service
CFU	colony forming units
ChE	cholinesterase
CI	confidence interval
CIPAC	Collaborative International Pesticides Analytical Council Limited
CL	confidence limits
cm	centimetre
d	day
DAA	days after application
DAR	draft assessment report
DAT	days after treatment
DM	dry matter
DT ₅₀	period required for 50 percent disappearance (define method of estimation)
DT ₉₀	period required for 90 percent disappearance (define method of estimation)
dw	dry weight
EbC ₅₀	effective concentration (biomass)
EC	emulsifiable concentrate
EC ₅₀	effective concentration
ECHA	European Chemical Agency
EEC	European Economic Community
EINECS	European Inventory of Existing Commercial Chemical Substances
ELINCS	European List of New Chemical Substances
EMDI	estimated maximum daily intake
ER_{50}	emergence rate/effective rate, median
ErC_{50}	effective concentration (growth rate)
EU	European Union
EUROPOEM	European Predictive Operator Exposure Model
f(twa)	time weighted average factor
FAO	Food and Agriculture Organisation of the United Nations
FIR	Food intake rate
FOB	functional observation battery
FOCUS	Forum for the Co-ordination of Pesticide Fate Models and their Use

FOMC	first-order multi-compartment model
g	gram
GAP	good agricultural practice
GC	gas chromatography
GCPF	Global Crop Protection Federation (formerly known as GIFAP)
GGT	gamma glutamyl transferase
GM	geometric mean
GS	growth stage
GSH	glutathion
h	hour(s)
ha	hectare
Hb	haemoglobin
Het	haematocrit
hL	hectolitre
HPLC	high pressure liquid chromatography
	or high performance liquid chromatography
HPLC-MS	
	high pressure liquid chromatography – mass spectrometry
HPLC-MS/MS	high performance liquid chromatography with tandem mass spectrometry
HQ	hazard quotient
HS	hockey stick kinetics
IEDI	international estimated daily intake
IESTI	international estimated short-term intake
ISO	International Organisation for Standardisation
IUPAC	International Union of Pure and Applied Chemistry
JMPR	Joint Meeting on the FAO Panel of Experts on Pesticide Residues in Food and
	the Environment and the WHO Expert Group on Pesticide Residues (Joint
V	Meeting on Pesticide Residues)
K _{doc}	organic carbon linear adsorption coefficient
kg	kilogram
K _{Foc}	Freundlich organic carbon adsorption coefficient
L	litre
LC	liquid chromatography
LC_{50}	lethal concentration, median
LD_{50}	lethal dose, median; dosis letalis media
LDH	lactate dehydrogenase
LOAEL	lowest observable adverse effect level
LOD	limit of detection
LOQ	limit of quantification (determination)
m	metre
M/L	mixing and loading
MAF	multiple application factor
MCH	mean corpuscular haemoglobin
MCHC	mean corpuscular haemoglobin concentration
MCV	mean corpuscular volume
mg	milligram
mL	millilitre
mm	millimetre
mN	milli-newton
MRL	maximum residue limit or level
MS	mass spectrometry
MSDS	material safety data sheet
MTD	maximum tolerated dose
MWHC	maximum water holding capacity
NESTI	national estimated short-term intake

na	nonogram
ng	nanogram
NOAEC	no observed adverse effect concentration
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOEL	no observed effect level
OM	organic matter content
Pa	pascal
PD	proportion of different food types
PEC	predicted environmental concentration
PECair	predicted environmental concentration in air
PEC_{gw}	predicted environmental concentration in ground water
PEC _{sed}	predicted environmental concentration in sediment
PEC _{soil}	predicted environmental concentration in soil
PEC_{sw}	predicted environmental concentration in surface water
	*
pH	pH-value
PHED	pesticide handler's exposure data
PHI	pre-harvest interval
PIE	potential inhalation exposure
pKa	negative logarithm (to the base 10) of the dissociation constant
Pow	partition coefficient between <i>n</i> -octanol and water
PPE	personal protective equipment
ppm	parts per million (10 ⁻⁶)
ppp	plant protection product
PT	proportion of diet obtained in the treated area
PTT	partial thromboplastin time
	quantitative structure-activity relationship
QSAR r ²	coefficient of determination
RPE	respiratory protective equipment
RUD	
	residue per unit dose
SC	suspension concentrate
SD	standard deviation
SFO	single first-order
SSD	species sensitivity distribution
STMR	supervised trials median residue
t _{1/2}	half-life (define method of estimation)
TER	toxicity exposure ratio
TERA	toxicity exposure ratio for acute exposure
TER _{LT}	toxicity exposure ratio following chronic exposure
TER _{ST}	toxicity exposure ratio following repeated exposure
TK	technical concentrate
TLV	threshold limit value
TMDI	theoretical maximum daily intake
TRR	total radioactive residue
TSH	thyroid stimulating hormone (thyrotropin)
TWA	• • • • • •
	time weighted average
UDS	unscheduled DNA synthesis
UK POEM	United Kingdom Predictive Operator Exposure Model
UPLC-MS/MS	ultra performance liquid chromatography with tandem mass spectrometry
UV	ultraviolet
W/S	water/sediment
w/v	weight per volume
w/w	weight per weight
WBC	white blood cell
WHO	World Health Organisation
	-

Peer Review of the pesticide risk assessment of the active substance fl	luxapyroxad
	BAS 700 F)

wk week yr year